构建人工锌合金层,实现稳定的锌金属阳极

IF 10.7 1区 工程技术 Q1 CHEMISTRY, PHYSICAL Green Energy & Environment Pub Date : 2024-04-04 DOI:10.1016/j.gee.2024.03.006
Long Jiang, Yizhao Chai, Dongdong Ji, Liwei Li, Le Li, Bingan Lu, Dongmin Li, Jiang Zhou
{"title":"构建人工锌合金层,实现稳定的锌金属阳极","authors":"Long Jiang, Yizhao Chai, Dongdong Ji, Liwei Li, Le Li, Bingan Lu, Dongmin Li, Jiang Zhou","doi":"10.1016/j.gee.2024.03.006","DOIUrl":null,"url":null,"abstract":"Aqueous zinc-ion batteries (AZIBs) present a promising option for next-generation batteries given their high safety, eco-friendliness, and resource sustainability. Nonetheless, the practical application of zinc anodes is hindered by inevitable parasitic reactions and dendrite growth. Here, zinc alloy layers (i.e., ZnCo and ZnFe alloys) were rationally constructed on the zinc surface by chemical displacement reactions. The alloying process exposes more (002) planes of the ZnCo anode to guide the preferential and dendrite-free zinc deposition. Furthermore, the ZnCo alloy layer not only effectively inhibits water-induced side reactions but also accelerates electrode kinetics, enabling highly reversible zinc plating/stripping. As a result, the ZnCo anode achieves a Coulombic efficiency of 99.2% over 1300 cycles, and the ZnCo symmetric cell exhibits a long cycle life of over 2000 h at 4.4 mA cm. Importantly, the ZnCo//NHVO full cell retains a high discharge capacity of 218.4 mAh g after 800 cycles. Meanwhile, the ZnFe-based symmetric cell also displays excellent cycling stability over 2500 h at 1.77 mA cm. This strategy provides a facile anode modification approach toward high-performance AZIBs.","PeriodicalId":12744,"journal":{"name":"Green Energy & Environment","volume":"5 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of an artificial zinc alloy layer toward stable zinc-metal anode\",\"authors\":\"Long Jiang, Yizhao Chai, Dongdong Ji, Liwei Li, Le Li, Bingan Lu, Dongmin Li, Jiang Zhou\",\"doi\":\"10.1016/j.gee.2024.03.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aqueous zinc-ion batteries (AZIBs) present a promising option for next-generation batteries given their high safety, eco-friendliness, and resource sustainability. Nonetheless, the practical application of zinc anodes is hindered by inevitable parasitic reactions and dendrite growth. Here, zinc alloy layers (i.e., ZnCo and ZnFe alloys) were rationally constructed on the zinc surface by chemical displacement reactions. The alloying process exposes more (002) planes of the ZnCo anode to guide the preferential and dendrite-free zinc deposition. Furthermore, the ZnCo alloy layer not only effectively inhibits water-induced side reactions but also accelerates electrode kinetics, enabling highly reversible zinc plating/stripping. As a result, the ZnCo anode achieves a Coulombic efficiency of 99.2% over 1300 cycles, and the ZnCo symmetric cell exhibits a long cycle life of over 2000 h at 4.4 mA cm. Importantly, the ZnCo//NHVO full cell retains a high discharge capacity of 218.4 mAh g after 800 cycles. Meanwhile, the ZnFe-based symmetric cell also displays excellent cycling stability over 2500 h at 1.77 mA cm. This strategy provides a facile anode modification approach toward high-performance AZIBs.\",\"PeriodicalId\":12744,\"journal\":{\"name\":\"Green Energy & Environment\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Energy & Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.gee.2024.03.006\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Energy & Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.gee.2024.03.006","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

锌离子水电池(AZIBs)具有高度安全性、生态友好性和资源可持续性,是下一代电池的理想选择。然而,锌阳极的实际应用受到不可避免的寄生反应和枝晶生长的阻碍。在这里,我们通过化学置换反应在锌表面合理地构建了锌合金层(即锌钴合金和锌铁合金)。合金化过程暴露了锌钴阳极的更多 (002) 平面,从而引导了锌的优先和无枝晶沉积。此外,锌钴合金层不仅能有效抑制水引起的副反应,还能加速电极动力学,实现高度可逆的镀锌/剥离。因此,锌钴阳极在 1300 次循环中的库仑效率达到了 99.2%,锌钴对称电池在 4.4 mA cm 的条件下可实现超过 2000 小时的长循环寿命。重要的是,ZnCo//NHVO 全电池在 800 次循环后仍能保持 218.4 mAh g 的高放电容量。同时,基于锌钴的对称电池在 1.77 mA cm 的条件下也显示出了超过 2500 小时的卓越循环稳定性。这种策略为实现高性能 AZIB 提供了一种简便的阳极改性方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Construction of an artificial zinc alloy layer toward stable zinc-metal anode
Aqueous zinc-ion batteries (AZIBs) present a promising option for next-generation batteries given their high safety, eco-friendliness, and resource sustainability. Nonetheless, the practical application of zinc anodes is hindered by inevitable parasitic reactions and dendrite growth. Here, zinc alloy layers (i.e., ZnCo and ZnFe alloys) were rationally constructed on the zinc surface by chemical displacement reactions. The alloying process exposes more (002) planes of the ZnCo anode to guide the preferential and dendrite-free zinc deposition. Furthermore, the ZnCo alloy layer not only effectively inhibits water-induced side reactions but also accelerates electrode kinetics, enabling highly reversible zinc plating/stripping. As a result, the ZnCo anode achieves a Coulombic efficiency of 99.2% over 1300 cycles, and the ZnCo symmetric cell exhibits a long cycle life of over 2000 h at 4.4 mA cm. Importantly, the ZnCo//NHVO full cell retains a high discharge capacity of 218.4 mAh g after 800 cycles. Meanwhile, the ZnFe-based symmetric cell also displays excellent cycling stability over 2500 h at 1.77 mA cm. This strategy provides a facile anode modification approach toward high-performance AZIBs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Green Energy & Environment
Green Energy & Environment Energy-Renewable Energy, Sustainability and the Environment
CiteScore
16.80
自引率
3.80%
发文量
332
审稿时长
12 days
期刊介绍: Green Energy & Environment (GEE) is an internationally recognized journal that undergoes a rigorous peer-review process. It focuses on interdisciplinary research related to green energy and the environment, covering a wide range of topics including biofuel and bioenergy, energy storage and networks, catalysis for sustainable processes, and materials for energy and the environment. GEE has a broad scope and encourages the submission of original and innovative research in both fundamental and engineering fields. Additionally, GEE serves as a platform for discussions, summaries, reviews, and previews of the impact of green energy on the eco-environment.
期刊最新文献
Construction of two-dimensional heterojunctions based on metal-free semiconductor materials and Covalent Organic Frameworks for exceptional solar energy catalysis Recent advancements in two-dimensional transition metal dichalcogenide materials towards hydrogen-evolution electrocatalysis Research on the application of defect engineering in the field of environmental catalysis Recyclable bio-based epoxy resin thermoset polymer from wood for circular economy Ti3C2 MXene nanosheets integrated cobalt-doped nickel hydroxide heterostructured composite: An efficient electrocatalyst for overall water-splitting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1