Wei Li, Shu Zhang, Xinya Bu, Jing Luo, Yi Zhang, Mengyu Yan, Ting Quan, Yanli Zhu
{"title":"用于热电池的高导电性双掺杂 Li7La3Zr2O12 固体电解质的制备及其性能","authors":"Wei Li, Shu Zhang, Xinya Bu, Jing Luo, Yi Zhang, Mengyu Yan, Ting Quan, Yanli Zhu","doi":"10.1016/j.gee.2024.04.002","DOIUrl":null,"url":null,"abstract":"Garnet LiLaZrO (LLZO) electrolytes have been recognized as a promising candidate to replace liquid/molten-state electrolytes in battery applications due to their exceptional performance, particularly Ga-doped LLZO (LLZGO), which exhibits high ionic conductivity. However, the limited size of the Li transport bottleneck restricts its high-current discharging performance. The present study focuses on the synthesis of Ga and Ba co-doped LLZO (LLZGBO) and investigates the influence of doping contents on the morphology, crystal structure, Li transport bottleneck size, and ionic conductivity. In particular, GaBa exhibits the highest ionic conductivity (6.11E-2 S cm at 550 °C) in comparison with other compositions, which can be attributed to its higher-energy morphology, larger bottleneck and unique Li transport channel. In addition to Ba, Sr and Ca have been co-doped with Ga into LLZO, respectively, to study the effect of doping ion radius on crystal structures and the properties of electrolytes. The characterization results demonstrate that the easier Li transport and higher ionic conductivity can be obtained when the electrolyte is doped with larger-radius ions. As a result, the assembled thermal battery with GaBa-LLZO electrolyte exhibits a remarkable voltage platform of 1.81 V and a high specific capacity of 455.65 mA h g at an elevated temperature of 525 °C. The discharge specific capacity of the thermal cell at 500 mA amounts to 63% of that at 100 mA, showcasing exceptional high-current discharging performance. When assembled as prototypes with fourteen single cells connected in series, the thermal batteries deliver an activation time of 38 ms and a discharge time of 32 s with the current density of 100 mA cm. These findings suggest that Ga, Ba co-doped LLZO solid-state electrolytes with high ionic conductivities holds great potential for high-capacity, quick-initiating and high-current discharging thermal batteries.","PeriodicalId":12744,"journal":{"name":"Green Energy & Environment","volume":"2 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation and performance of highly-conductive dual-doped Li7La3Zr2O12 solid electrolytes for thermal batteries\",\"authors\":\"Wei Li, Shu Zhang, Xinya Bu, Jing Luo, Yi Zhang, Mengyu Yan, Ting Quan, Yanli Zhu\",\"doi\":\"10.1016/j.gee.2024.04.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Garnet LiLaZrO (LLZO) electrolytes have been recognized as a promising candidate to replace liquid/molten-state electrolytes in battery applications due to their exceptional performance, particularly Ga-doped LLZO (LLZGO), which exhibits high ionic conductivity. However, the limited size of the Li transport bottleneck restricts its high-current discharging performance. The present study focuses on the synthesis of Ga and Ba co-doped LLZO (LLZGBO) and investigates the influence of doping contents on the morphology, crystal structure, Li transport bottleneck size, and ionic conductivity. In particular, GaBa exhibits the highest ionic conductivity (6.11E-2 S cm at 550 °C) in comparison with other compositions, which can be attributed to its higher-energy morphology, larger bottleneck and unique Li transport channel. In addition to Ba, Sr and Ca have been co-doped with Ga into LLZO, respectively, to study the effect of doping ion radius on crystal structures and the properties of electrolytes. The characterization results demonstrate that the easier Li transport and higher ionic conductivity can be obtained when the electrolyte is doped with larger-radius ions. As a result, the assembled thermal battery with GaBa-LLZO electrolyte exhibits a remarkable voltage platform of 1.81 V and a high specific capacity of 455.65 mA h g at an elevated temperature of 525 °C. The discharge specific capacity of the thermal cell at 500 mA amounts to 63% of that at 100 mA, showcasing exceptional high-current discharging performance. When assembled as prototypes with fourteen single cells connected in series, the thermal batteries deliver an activation time of 38 ms and a discharge time of 32 s with the current density of 100 mA cm. These findings suggest that Ga, Ba co-doped LLZO solid-state electrolytes with high ionic conductivities holds great potential for high-capacity, quick-initiating and high-current discharging thermal batteries.\",\"PeriodicalId\":12744,\"journal\":{\"name\":\"Green Energy & Environment\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Energy & Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.gee.2024.04.002\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Energy & Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.gee.2024.04.002","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
石榴石态 LiLaZrO(LLZO)电解质因其优异的性能,尤其是掺镓 LLZO(LLZGO)表现出的高离子电导率,已被公认为有望在电池应用中取代液态/熔融态电解质的候选材料。然而,锂传输瓶颈的有限尺寸限制了其大电流放电性能。本研究重点研究了镓和钡共掺杂 LLZO(LLZGBO)的合成,并考察了掺杂量对其形貌、晶体结构、锂传输瓶颈尺寸和离子电导率的影响。与其他成分相比,GaBa 尤其表现出最高的离子电导率(550 ℃ 时为 6.11E-2 S cm),这可归因于其较高能量的形貌、较大的瓶颈和独特的锂传输通道。除了 Ba 之外,LLZO 中还分别掺杂了 Sr 和 Ca,以研究掺杂离子半径对晶体结构和电解质性质的影响。表征结果表明,电解质中掺入较大半径的离子时,锂的传输更容易,离子电导率更高。因此,使用 GaBa-LLZO 电解质组装的热电池在 525 °C 的高温下显示出 1.81 V 的显著电压平台和 455.65 mA h g 的高比容量。热电池在 500 mA 时的放电比容量是 100 mA 时的 63%,显示出卓越的大电流放电性能。当把 14 个单体电池串联组装成原型时,热电池的激活时间为 38 毫秒,放电时间为 32 秒,电流密度为 100 毫安厘米。这些研究结果表明,具有高离子导电率的镓、钡共掺杂 LLZO 固态电解质在高容量、快速启动和大电流放电热电池方面具有巨大潜力。
Preparation and performance of highly-conductive dual-doped Li7La3Zr2O12 solid electrolytes for thermal batteries
Garnet LiLaZrO (LLZO) electrolytes have been recognized as a promising candidate to replace liquid/molten-state electrolytes in battery applications due to their exceptional performance, particularly Ga-doped LLZO (LLZGO), which exhibits high ionic conductivity. However, the limited size of the Li transport bottleneck restricts its high-current discharging performance. The present study focuses on the synthesis of Ga and Ba co-doped LLZO (LLZGBO) and investigates the influence of doping contents on the morphology, crystal structure, Li transport bottleneck size, and ionic conductivity. In particular, GaBa exhibits the highest ionic conductivity (6.11E-2 S cm at 550 °C) in comparison with other compositions, which can be attributed to its higher-energy morphology, larger bottleneck and unique Li transport channel. In addition to Ba, Sr and Ca have been co-doped with Ga into LLZO, respectively, to study the effect of doping ion radius on crystal structures and the properties of electrolytes. The characterization results demonstrate that the easier Li transport and higher ionic conductivity can be obtained when the electrolyte is doped with larger-radius ions. As a result, the assembled thermal battery with GaBa-LLZO electrolyte exhibits a remarkable voltage platform of 1.81 V and a high specific capacity of 455.65 mA h g at an elevated temperature of 525 °C. The discharge specific capacity of the thermal cell at 500 mA amounts to 63% of that at 100 mA, showcasing exceptional high-current discharging performance. When assembled as prototypes with fourteen single cells connected in series, the thermal batteries deliver an activation time of 38 ms and a discharge time of 32 s with the current density of 100 mA cm. These findings suggest that Ga, Ba co-doped LLZO solid-state electrolytes with high ionic conductivities holds great potential for high-capacity, quick-initiating and high-current discharging thermal batteries.
期刊介绍:
Green Energy & Environment (GEE) is an internationally recognized journal that undergoes a rigorous peer-review process. It focuses on interdisciplinary research related to green energy and the environment, covering a wide range of topics including biofuel and bioenergy, energy storage and networks, catalysis for sustainable processes, and materials for energy and the environment. GEE has a broad scope and encourages the submission of original and innovative research in both fundamental and engineering fields. Additionally, GEE serves as a platform for discussions, summaries, reviews, and previews of the impact of green energy on the eco-environment.