Xinyi Lu, Yoichiro Kanno, George P. Valentine, Matt A. Kulp, Mevin B. Hooten
{"title":"用于时空种群动力学的正则化潜在轨迹模型","authors":"Xinyi Lu, Yoichiro Kanno, George P. Valentine, Matt A. Kulp, Mevin B. Hooten","doi":"10.1007/s13253-024-00616-y","DOIUrl":null,"url":null,"abstract":"<p>Climate change impacts ecosystems variably in space and time. Landscape features may confer resistance against environmental stressors, whose intensity and frequency also depend on local weather patterns. Characterizing spatio-temporal variation in population responses to these stressors improves our understanding of what constitutes climate change refugia. We developed a Bayesian hierarchical framework that allowed us to differentiate population responses to seasonal weather patterns depending on their “sensitive” or “resilient” states. The framework inferred these sensitivity states based on latent trajectories delineating dynamic state probabilities. The latent trajectories are composed of linear initial conditions, functional regression models, and additive random effects representing ecological mechanisms such as topological buffering and effects of legacy weather conditions. Further, we developed a Bayesian regularization strategy that promoted temporal coherence in the inferred states. We demonstrated our hierarchical framework and regularization strategy using simulated examples and a case study of native brook trout (<i>Salvelinus fontinalis</i>) count data from the Great Smoky Mountains National Park, southeastern USA. Our study provided insights into ecological processes influencing brook trout sensitivity. Our framework can also be applied to other species and ecosystems to facilitate management and conservation.</p>","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":"12 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regularized Latent Trajectory Models for Spatio-temporal Population Dynamics\",\"authors\":\"Xinyi Lu, Yoichiro Kanno, George P. Valentine, Matt A. Kulp, Mevin B. Hooten\",\"doi\":\"10.1007/s13253-024-00616-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Climate change impacts ecosystems variably in space and time. Landscape features may confer resistance against environmental stressors, whose intensity and frequency also depend on local weather patterns. Characterizing spatio-temporal variation in population responses to these stressors improves our understanding of what constitutes climate change refugia. We developed a Bayesian hierarchical framework that allowed us to differentiate population responses to seasonal weather patterns depending on their “sensitive” or “resilient” states. The framework inferred these sensitivity states based on latent trajectories delineating dynamic state probabilities. The latent trajectories are composed of linear initial conditions, functional regression models, and additive random effects representing ecological mechanisms such as topological buffering and effects of legacy weather conditions. Further, we developed a Bayesian regularization strategy that promoted temporal coherence in the inferred states. We demonstrated our hierarchical framework and regularization strategy using simulated examples and a case study of native brook trout (<i>Salvelinus fontinalis</i>) count data from the Great Smoky Mountains National Park, southeastern USA. Our study provided insights into ecological processes influencing brook trout sensitivity. Our framework can also be applied to other species and ecosystems to facilitate management and conservation.</p>\",\"PeriodicalId\":56336,\"journal\":{\"name\":\"Journal of Agricultural Biological and Environmental Statistics\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agricultural Biological and Environmental Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13253-024-00616-y\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural Biological and Environmental Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13253-024-00616-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
Regularized Latent Trajectory Models for Spatio-temporal Population Dynamics
Climate change impacts ecosystems variably in space and time. Landscape features may confer resistance against environmental stressors, whose intensity and frequency also depend on local weather patterns. Characterizing spatio-temporal variation in population responses to these stressors improves our understanding of what constitutes climate change refugia. We developed a Bayesian hierarchical framework that allowed us to differentiate population responses to seasonal weather patterns depending on their “sensitive” or “resilient” states. The framework inferred these sensitivity states based on latent trajectories delineating dynamic state probabilities. The latent trajectories are composed of linear initial conditions, functional regression models, and additive random effects representing ecological mechanisms such as topological buffering and effects of legacy weather conditions. Further, we developed a Bayesian regularization strategy that promoted temporal coherence in the inferred states. We demonstrated our hierarchical framework and regularization strategy using simulated examples and a case study of native brook trout (Salvelinus fontinalis) count data from the Great Smoky Mountains National Park, southeastern USA. Our study provided insights into ecological processes influencing brook trout sensitivity. Our framework can also be applied to other species and ecosystems to facilitate management and conservation.
期刊介绍:
The Journal of Agricultural, Biological and Environmental Statistics (JABES) publishes papers that introduce new statistical methods to solve practical problems in the agricultural sciences, the biological sciences (including biotechnology), and the environmental sciences (including those dealing with natural resources). Papers that apply existing methods in a novel context are also encouraged. Interdisciplinary papers and papers that illustrate the application of new and important statistical methods using real data are strongly encouraged. The journal does not normally publish papers that have a primary focus on human genetics, human health, or medical statistics.