图依赖性下学习的泛化边界:一项调查

IF 4.3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Machine Learning Pub Date : 2024-04-03 DOI:10.1007/s10994-024-06536-9
Rui-Ray Zhang, Massih-Reza Amini
{"title":"图依赖性下学习的泛化边界:一项调查","authors":"Rui-Ray Zhang, Massih-Reza Amini","doi":"10.1007/s10994-024-06536-9","DOIUrl":null,"url":null,"abstract":"<p>Traditional statistical learning theory relies on the assumption that data are identically and independently distributed (i.i.d.). However, this assumption often does not hold in many real-life applications. In this survey, we explore learning scenarios where examples are dependent and their dependence relationship is described by a <i>dependency graph</i>, a commonly utilized model in probability and combinatorics. We collect various graph-dependent concentration bounds, which are then used to derive Rademacher complexity and stability generalization bounds for learning from graph-dependent data. We illustrate this paradigm through practical learning tasks and provide some research directions for future work. To our knowledge, this survey is the first of this kind on this subject.</p>","PeriodicalId":49900,"journal":{"name":"Machine Learning","volume":"13 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalization bounds for learning under graph-dependence: a survey\",\"authors\":\"Rui-Ray Zhang, Massih-Reza Amini\",\"doi\":\"10.1007/s10994-024-06536-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Traditional statistical learning theory relies on the assumption that data are identically and independently distributed (i.i.d.). However, this assumption often does not hold in many real-life applications. In this survey, we explore learning scenarios where examples are dependent and their dependence relationship is described by a <i>dependency graph</i>, a commonly utilized model in probability and combinatorics. We collect various graph-dependent concentration bounds, which are then used to derive Rademacher complexity and stability generalization bounds for learning from graph-dependent data. We illustrate this paradigm through practical learning tasks and provide some research directions for future work. To our knowledge, this survey is the first of this kind on this subject.</p>\",\"PeriodicalId\":49900,\"journal\":{\"name\":\"Machine Learning\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Learning\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10994-024-06536-9\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10994-024-06536-9","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

传统的统计学习理论依赖于这样一个假设,即数据是相同且独立分布的(i.i.d.)。然而,在现实生活中的许多应用中,这一假设往往并不成立。在本研究中,我们将探讨实例具有依赖性且其依赖关系由依赖图描述的学习场景,依赖图是概率论和组合论中常用的模型。我们收集了各种依赖图的集中边界,然后利用这些边界推导出依赖图数据学习的拉德马赫复杂度和稳定性泛化边界。我们通过实际的学习任务来说明这一范例,并为未来的工作提供了一些研究方向。据我们所知,本调查报告是关于这一主题的第一份调查报告。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generalization bounds for learning under graph-dependence: a survey

Traditional statistical learning theory relies on the assumption that data are identically and independently distributed (i.i.d.). However, this assumption often does not hold in many real-life applications. In this survey, we explore learning scenarios where examples are dependent and their dependence relationship is described by a dependency graph, a commonly utilized model in probability and combinatorics. We collect various graph-dependent concentration bounds, which are then used to derive Rademacher complexity and stability generalization bounds for learning from graph-dependent data. We illustrate this paradigm through practical learning tasks and provide some research directions for future work. To our knowledge, this survey is the first of this kind on this subject.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Machine Learning
Machine Learning 工程技术-计算机:人工智能
CiteScore
11.00
自引率
2.70%
发文量
162
审稿时长
3 months
期刊介绍: Machine Learning serves as a global platform dedicated to computational approaches in learning. The journal reports substantial findings on diverse learning methods applied to various problems, offering support through empirical studies, theoretical analysis, or connections to psychological phenomena. It demonstrates the application of learning methods to solve significant problems and aims to enhance the conduct of machine learning research with a focus on verifiable and replicable evidence in published papers.
期刊最新文献
On metafeatures’ ability of implicit concept identification Persistent Laplacian-enhanced algorithm for scarcely labeled data classification Towards a foundation large events model for soccer Conformal prediction for regression models with asymmetrically distributed errors: application to aircraft navigation during landing maneuver In-game soccer outcome prediction with offline reinforcement learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1