Fathan Bahfie, Yepi Triapriani, Achmad Shofi, Fajar Nurjaman, Slamet Sumardi, Ulin Herlina, Riska N. Tirmayani, Pulung Karo Karo, Diah Susanti
{"title":"硫化钠和无烟煤用量对褐铁矿选择性还原的影响","authors":"Fathan Bahfie, Yepi Triapriani, Achmad Shofi, Fajar Nurjaman, Slamet Sumardi, Ulin Herlina, Riska N. Tirmayani, Pulung Karo Karo, Diah Susanti","doi":"10.1007/s42461-024-00972-w","DOIUrl":null,"url":null,"abstract":"<p>The process of selectively reducing limonite ore involves adding 10 wt% sodium sulfide and using anthracite as a reducing agent in varying amounts (5, 10, 15, and 20 wt%). The research aims to optimize the extraction process by studying how factors like reduction temperature, holding time, and reducing agent dosage affect on iron and nickel content and recovery. The ideal conditions identified are a temperature of 1150 °C, a 10 wt% additive, and a corresponding 10 wt% reducing agent amount, with a crucial 60-min reduction process. X-ray diffraction (XRD) results show dominant phases like iron-nickel (FeNi), iron sulfide (FeS), fayalite (Fe<sub>2</sub>SiO<sub>4</sub>), and wustite (FeO) under these conditions, indicating complex chemical interactions. Impressive X-ray fluorescence (XRF) test results precisely measure a nickel component with a 3.03 wt% and a recovery rate of 89.32%, highlighting the process’s effectiveness in extracting potential from limonitic nickel ore. The resulting ferronickel alloy has a controlled particle size of 29.23 µm. The study emphasizes the influence of sodium sulfide and anthracite dosage on the selective reduction of limonite ore.</p>","PeriodicalId":18588,"journal":{"name":"Mining, Metallurgy & Exploration","volume":"2022 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effect of Sodium Sulfide and Anthracite Dosage on Selective Reduction of Limonite\",\"authors\":\"Fathan Bahfie, Yepi Triapriani, Achmad Shofi, Fajar Nurjaman, Slamet Sumardi, Ulin Herlina, Riska N. Tirmayani, Pulung Karo Karo, Diah Susanti\",\"doi\":\"10.1007/s42461-024-00972-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The process of selectively reducing limonite ore involves adding 10 wt% sodium sulfide and using anthracite as a reducing agent in varying amounts (5, 10, 15, and 20 wt%). The research aims to optimize the extraction process by studying how factors like reduction temperature, holding time, and reducing agent dosage affect on iron and nickel content and recovery. The ideal conditions identified are a temperature of 1150 °C, a 10 wt% additive, and a corresponding 10 wt% reducing agent amount, with a crucial 60-min reduction process. X-ray diffraction (XRD) results show dominant phases like iron-nickel (FeNi), iron sulfide (FeS), fayalite (Fe<sub>2</sub>SiO<sub>4</sub>), and wustite (FeO) under these conditions, indicating complex chemical interactions. Impressive X-ray fluorescence (XRF) test results precisely measure a nickel component with a 3.03 wt% and a recovery rate of 89.32%, highlighting the process’s effectiveness in extracting potential from limonitic nickel ore. The resulting ferronickel alloy has a controlled particle size of 29.23 µm. The study emphasizes the influence of sodium sulfide and anthracite dosage on the selective reduction of limonite ore.</p>\",\"PeriodicalId\":18588,\"journal\":{\"name\":\"Mining, Metallurgy & Exploration\",\"volume\":\"2022 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mining, Metallurgy & Exploration\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s42461-024-00972-w\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mining, Metallurgy & Exploration","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s42461-024-00972-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
The Effect of Sodium Sulfide and Anthracite Dosage on Selective Reduction of Limonite
The process of selectively reducing limonite ore involves adding 10 wt% sodium sulfide and using anthracite as a reducing agent in varying amounts (5, 10, 15, and 20 wt%). The research aims to optimize the extraction process by studying how factors like reduction temperature, holding time, and reducing agent dosage affect on iron and nickel content and recovery. The ideal conditions identified are a temperature of 1150 °C, a 10 wt% additive, and a corresponding 10 wt% reducing agent amount, with a crucial 60-min reduction process. X-ray diffraction (XRD) results show dominant phases like iron-nickel (FeNi), iron sulfide (FeS), fayalite (Fe2SiO4), and wustite (FeO) under these conditions, indicating complex chemical interactions. Impressive X-ray fluorescence (XRF) test results precisely measure a nickel component with a 3.03 wt% and a recovery rate of 89.32%, highlighting the process’s effectiveness in extracting potential from limonitic nickel ore. The resulting ferronickel alloy has a controlled particle size of 29.23 µm. The study emphasizes the influence of sodium sulfide and anthracite dosage on the selective reduction of limonite ore.
期刊介绍:
The aim of this international peer-reviewed journal of the Society for Mining, Metallurgy & Exploration (SME) is to provide a broad-based forum for the exchange of real-world and theoretical knowledge from academia, government and industry that is pertinent to mining, mineral/metallurgical processing, exploration and other fields served by the Society.
The journal publishes high-quality original research publications, in-depth special review articles, reviews of state-of-the-art and innovative technologies and industry methodologies, communications of work of topical and emerging interest, and other works that enhance understanding on both the fundamental and practical levels.