正链 RNA 病毒复制细胞器的酷炫外观:冷冻电子显微镜的新发现

IF 12.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Annual review of biochemistry Pub Date : 2024-04-10 DOI:10.1146/annurev-biochem-052521-115736
Nina L. de Beijer, Eric J. Snijder, Montserrat Bárcena
{"title":"正链 RNA 病毒复制细胞器的酷炫外观:冷冻电子显微镜的新发现","authors":"Nina L. de Beijer, Eric J. Snijder, Montserrat Bárcena","doi":"10.1146/annurev-biochem-052521-115736","DOIUrl":null,"url":null,"abstract":"Positive-strand RNA viruses encompass a variety of established and emerging eukaryotic pathogens. Their genome replication is confined to specialized cytoplasmic membrane compartments known as replication organelles (ROs). These ROs derive from host membranes, transformed into distinct structures such as invaginated spherules or intricate membrane networks including single- and/or double-membrane vesicles. ROs play a vital role in orchestrating viral RNA synthesis and evading detection by innate immune sensors of the host. In recent years, groundbreaking cryo–electron microscopy studies conducted with several prototypic viruses have significantly advanced our understanding of RO structure and function. Notably, these studies unveiled the presence of crown-shaped multimeric viral protein complexes that seem to actively participate in viral RNA synthesis and regulate the release of newly synthesized RNA into the cytosol for translation and packaging. These findings have shed light on novel viral functions and fascinating macromolecular complexes that delineate promising new avenues for future research.","PeriodicalId":7980,"journal":{"name":"Annual review of biochemistry","volume":"68 1","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Cool Look at Positive-Strand RNA Virus Replication Organelles: New Insights from Cryo–Electron Microscopy\",\"authors\":\"Nina L. de Beijer, Eric J. Snijder, Montserrat Bárcena\",\"doi\":\"10.1146/annurev-biochem-052521-115736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Positive-strand RNA viruses encompass a variety of established and emerging eukaryotic pathogens. Their genome replication is confined to specialized cytoplasmic membrane compartments known as replication organelles (ROs). These ROs derive from host membranes, transformed into distinct structures such as invaginated spherules or intricate membrane networks including single- and/or double-membrane vesicles. ROs play a vital role in orchestrating viral RNA synthesis and evading detection by innate immune sensors of the host. In recent years, groundbreaking cryo–electron microscopy studies conducted with several prototypic viruses have significantly advanced our understanding of RO structure and function. Notably, these studies unveiled the presence of crown-shaped multimeric viral protein complexes that seem to actively participate in viral RNA synthesis and regulate the release of newly synthesized RNA into the cytosol for translation and packaging. These findings have shed light on novel viral functions and fascinating macromolecular complexes that delineate promising new avenues for future research.\",\"PeriodicalId\":7980,\"journal\":{\"name\":\"Annual review of biochemistry\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-biochem-052521-115736\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-biochem-052521-115736","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

正链 RNA 病毒包括各种已确定的和新出现的真核病原体。它们的基因组复制仅限于被称为复制细胞器(ROs)的特化细胞质膜区。这些细胞器来源于宿主膜,并转化为独特的结构,如内陷球体或复杂的膜网络(包括单膜和/或双膜囊泡)。ROs 在协调病毒 RNA 合成和躲避宿主先天性免疫传感器检测方面发挥着重要作用。近年来,对几种原型病毒进行的突破性冷冻电镜研究极大地推动了我们对 RO 结构和功能的了解。值得注意的是,这些研究揭示了冠状多聚体病毒蛋白复合物的存在,它们似乎积极参与病毒 RNA 的合成,并调节新合成的 RNA 释放到细胞质中进行翻译和包装。这些发现揭示了新的病毒功能和引人入胜的大分子复合物,为今后的研究开辟了前景广阔的新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Cool Look at Positive-Strand RNA Virus Replication Organelles: New Insights from Cryo–Electron Microscopy
Positive-strand RNA viruses encompass a variety of established and emerging eukaryotic pathogens. Their genome replication is confined to specialized cytoplasmic membrane compartments known as replication organelles (ROs). These ROs derive from host membranes, transformed into distinct structures such as invaginated spherules or intricate membrane networks including single- and/or double-membrane vesicles. ROs play a vital role in orchestrating viral RNA synthesis and evading detection by innate immune sensors of the host. In recent years, groundbreaking cryo–electron microscopy studies conducted with several prototypic viruses have significantly advanced our understanding of RO structure and function. Notably, these studies unveiled the presence of crown-shaped multimeric viral protein complexes that seem to actively participate in viral RNA synthesis and regulate the release of newly synthesized RNA into the cytosol for translation and packaging. These findings have shed light on novel viral functions and fascinating macromolecular complexes that delineate promising new avenues for future research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual review of biochemistry
Annual review of biochemistry 生物-生化与分子生物学
CiteScore
33.90
自引率
0.00%
发文量
31
期刊介绍: The Annual Review of Biochemistry, in publication since 1932, sets the standard for review articles in biological chemistry and molecular biology. Since its inception, these volumes have served as an indispensable resource for both the practicing biochemist and students of biochemistry.
期刊最新文献
A Lipid-Raft Theory of Alzheimer's Disease. Lipid Quality Control and Ferroptosis: From Concept to Mechanism. A Life of Translocations. Signaling from RAS to RAF: The Molecules and Their Mechanisms. The Nicotinic Acetylcholine Receptor and Its Pentameric Homologs: Toward an Allosteric Mechanism of Signal Transduction at the Atomic Level.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1