{"title":"论某些勒贝格-拉马努扬-纳格尔型方程的解","authors":"Elif Kızıldere Mutlu, Gökhan Soydan","doi":"10.1142/s1793042124500593","DOIUrl":null,"url":null,"abstract":"<p>Denote by <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>h</mi><mo>=</mo><mi>h</mi><mo stretchy=\"false\">(</mo><mo stretchy=\"false\">−</mo><mi>p</mi><mo stretchy=\"false\">)</mo></math></span><span></span> the class number of the imaginary quadratic field <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>ℚ</mi><mo stretchy=\"false\">(</mo><msqrt><mrow><mo stretchy=\"false\">−</mo><mi>p</mi></mrow></msqrt><mo stretchy=\"false\">)</mo></math></span><span></span> with <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>p</mi></math></span><span></span> prime. It is well known that <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>h</mi><mo>=</mo><mn>1</mn></math></span><span></span> for <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>p</mi><mo>∈</mo><mo stretchy=\"false\">{</mo><mn>3</mn><mo>,</mo><mn>7</mn><mo>,</mo><mn>1</mn><mn>1</mn><mo>,</mo><mn>1</mn><mn>9</mn><mo>,</mo><mn>4</mn><mn>3</mn><mo>,</mo><mn>6</mn><mn>7</mn><mo>,</mo><mn>1</mn><mn>6</mn><mn>3</mn><mo stretchy=\"false\">}</mo></math></span><span></span>. Recently, all the solutions of the Diophantine equation <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\"false\">+</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msup><mo>=</mo><mn>4</mn><msup><mrow><mi>y</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span> with <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>h</mi><mo>=</mo><mn>1</mn></math></span><span></span> were given by Chakraborty <i>et al</i>. in [Complete solutions of certain Lebesgue–Ramanujan–Nagell type equations, <i>Publ. Math. Debrecen</i><b>97</b>(3–4) (2020) 339–352]. In this paper, we study the Diophantine equation <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\"false\">+</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msup><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>r</mi></mrow></msup><msup><mrow><mi>y</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span> in unknown integers <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>s</mi><mo>,</mo><mi>r</mi><mo>,</mo><mi>n</mi><mo stretchy=\"false\">)</mo><mo>,</mo></math></span><span></span> where <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi>s</mi><mo>≥</mo><mn>0</mn></math></span><span></span>, <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>r</mi><mo>≥</mo><mn>3</mn></math></span><span></span>, <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>≥</mo><mn>3</mn></math></span><span></span>, <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><mi>h</mi><mo>∈</mo><mo stretchy=\"false\">{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo stretchy=\"false\">}</mo></math></span><span></span> and <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><mo>gcd</mo><mo stretchy=\"false\">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy=\"false\">)</mo><mo>=</mo><mn>1</mn></math></span><span></span>. To do this, we use the known results from the modularity of Galois representations associated with Frey–Hellegoaurch elliptic curves, the symplectic method and elementary methods of classical algebraic number theory. The aim of this paper is to extend the above results of Chakraborty <i>et al</i>.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the solutions of some Lebesgue–Ramanujan–Nagell type equations\",\"authors\":\"Elif Kızıldere Mutlu, Gökhan Soydan\",\"doi\":\"10.1142/s1793042124500593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Denote by <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>h</mi><mo>=</mo><mi>h</mi><mo stretchy=\\\"false\\\">(</mo><mo stretchy=\\\"false\\\">−</mo><mi>p</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> the class number of the imaginary quadratic field <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>ℚ</mi><mo stretchy=\\\"false\\\">(</mo><msqrt><mrow><mo stretchy=\\\"false\\\">−</mo><mi>p</mi></mrow></msqrt><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> with <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>p</mi></math></span><span></span> prime. It is well known that <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>h</mi><mo>=</mo><mn>1</mn></math></span><span></span> for <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>p</mi><mo>∈</mo><mo stretchy=\\\"false\\\">{</mo><mn>3</mn><mo>,</mo><mn>7</mn><mo>,</mo><mn>1</mn><mn>1</mn><mo>,</mo><mn>1</mn><mn>9</mn><mo>,</mo><mn>4</mn><mn>3</mn><mo>,</mo><mn>6</mn><mn>7</mn><mo>,</mo><mn>1</mn><mn>6</mn><mn>3</mn><mo stretchy=\\\"false\\\">}</mo></math></span><span></span>. Recently, all the solutions of the Diophantine equation <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\\\"false\\\">+</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msup><mo>=</mo><mn>4</mn><msup><mrow><mi>y</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span> with <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>h</mi><mo>=</mo><mn>1</mn></math></span><span></span> were given by Chakraborty <i>et al</i>. in [Complete solutions of certain Lebesgue–Ramanujan–Nagell type equations, <i>Publ. Math. Debrecen</i><b>97</b>(3–4) (2020) 339–352]. In this paper, we study the Diophantine equation <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\\\"false\\\">+</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msup><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>r</mi></mrow></msup><msup><mrow><mi>y</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span> in unknown integers <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>s</mi><mo>,</mo><mi>r</mi><mo>,</mo><mi>n</mi><mo stretchy=\\\"false\\\">)</mo><mo>,</mo></math></span><span></span> where <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>s</mi><mo>≥</mo><mn>0</mn></math></span><span></span>, <span><math altimg=\\\"eq-00011.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>r</mi><mo>≥</mo><mn>3</mn></math></span><span></span>, <span><math altimg=\\\"eq-00012.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>n</mi><mo>≥</mo><mn>3</mn></math></span><span></span>, <span><math altimg=\\\"eq-00013.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>h</mi><mo>∈</mo><mo stretchy=\\\"false\\\">{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo stretchy=\\\"false\\\">}</mo></math></span><span></span> and <span><math altimg=\\\"eq-00014.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo>gcd</mo><mo stretchy=\\\"false\\\">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy=\\\"false\\\">)</mo><mo>=</mo><mn>1</mn></math></span><span></span>. To do this, we use the known results from the modularity of Galois representations associated with Frey–Hellegoaurch elliptic curves, the symplectic method and elementary methods of classical algebraic number theory. The aim of this paper is to extend the above results of Chakraborty <i>et al</i>.</p>\",\"PeriodicalId\":14293,\"journal\":{\"name\":\"International Journal of Number Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793042124500593\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793042124500593","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
用 h=h(-p) 表示 p 为素数的虚二次型域ℚ(-p) 的类数。众所周知,对于 p∈{3,7,11,19,43,67,163},h=1。最近,Chakraborty 等人在 [Complete solutions of certain Lebesgue-Ramanujan-Nagell type equations, Publ.Math.Debrecen97(3-4) (2020) 339-352] 中给出。本文研究未知整数 (x,y,s,r,n) 中的二叉方程 x2+ps=2ryn,其中 s≥0,r≥3,n≥3,h∈{1,2,3} 和 gcd(x,y)=1。为此,我们使用了与弗雷-赫勒高椭圆曲线相关的伽罗瓦表示的模块性、交映方法和经典代数数论的基本方法的已知结果。本文的目的是扩展 Chakraborty 等人的上述结果。
On the solutions of some Lebesgue–Ramanujan–Nagell type equations
Denote by the class number of the imaginary quadratic field with prime. It is well known that for . Recently, all the solutions of the Diophantine equation with were given by Chakraborty et al. in [Complete solutions of certain Lebesgue–Ramanujan–Nagell type equations, Publ. Math. Debrecen97(3–4) (2020) 339–352]. In this paper, we study the Diophantine equation in unknown integers where , , , and . To do this, we use the known results from the modularity of Galois representations associated with Frey–Hellegoaurch elliptic curves, the symplectic method and elementary methods of classical algebraic number theory. The aim of this paper is to extend the above results of Chakraborty et al.
期刊介绍:
This journal publishes original research papers and review articles on all areas of Number Theory, including elementary number theory, analytic number theory, algebraic number theory, arithmetic algebraic geometry, geometry of numbers, diophantine equations, diophantine approximation, transcendental number theory, probabilistic number theory, modular forms, multiplicative number theory, additive number theory, partitions, and computational number theory.