Sangwook Kim, Jimin Lee, Jungye Kim, Bitbyeol Kim, Chang Heon Choi, Seongmoon Jung
{"title":"利用卷积神经网络将单能量计算机断层扫描转换为双能量计算机断层扫描的参数图。","authors":"Sangwook Kim, Jimin Lee, Jungye Kim, Bitbyeol Kim, Chang Heon Choi, Seongmoon Jung","doi":"10.1093/bjr/tqae076","DOIUrl":null,"url":null,"abstract":"We propose a deep learning (DL) multi-task learning framework using convolutional neural network (CNN) for a direct conversion of single-energy CT (SECT) to three different parametric maps of dual-energy CT (DECT): Virtual-monochromatic image (VMI), effective atomic number (EAN), and relative electron density (RED).","PeriodicalId":516851,"journal":{"name":"The British Journal of Radiology","volume":"72 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conversion of single-energy computed tomography to parametric maps of dual-energy computed tomography using convolutional neural network.\",\"authors\":\"Sangwook Kim, Jimin Lee, Jungye Kim, Bitbyeol Kim, Chang Heon Choi, Seongmoon Jung\",\"doi\":\"10.1093/bjr/tqae076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a deep learning (DL) multi-task learning framework using convolutional neural network (CNN) for a direct conversion of single-energy CT (SECT) to three different parametric maps of dual-energy CT (DECT): Virtual-monochromatic image (VMI), effective atomic number (EAN), and relative electron density (RED).\",\"PeriodicalId\":516851,\"journal\":{\"name\":\"The British Journal of Radiology\",\"volume\":\"72 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The British Journal of Radiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bjr/tqae076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The British Journal of Radiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bjr/tqae076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Conversion of single-energy computed tomography to parametric maps of dual-energy computed tomography using convolutional neural network.
We propose a deep learning (DL) multi-task learning framework using convolutional neural network (CNN) for a direct conversion of single-energy CT (SECT) to three different parametric maps of dual-energy CT (DECT): Virtual-monochromatic image (VMI), effective atomic number (EAN), and relative electron density (RED).