{"title":"基于 OFDM 的双功能雷达通信的无线电资源管理:和速率与公平性","authors":"Jia Zhu, Yuanhao Cui, Junsheng Mu, Zexuan Jing, Xiaojun Jing","doi":"10.1186/s13638-024-02343-x","DOIUrl":null,"url":null,"abstract":"<p>This paper focuses on radio resource management (RRM) in multi-user dual-function radar communication (DFRC) systems using orthogonal frequency division multiplexing (OFDM) waveforms. We propose two RRM schemes, one from the perspective of sum rate maximization and the other from the perspective of user fairness maximization. These optimization problems are non-convex due to the presence of mixed integer terms, making them difficult to solve. To address these challenges, we have employed a decomposition approach to transform these two complex problems into separate, more readily solvable ones. In addressing the sum rate maximization problem, we initially introduce a heuristic greedy algorithm to obtain a resource allocation scheme that satisfies radar performance requirements. Subsequently, we utilize a cyclic iterative method along with KKT conditions to solve the sum rate maximization problem for communication users. Concerning the fairness maximization problem for communication users, we similarly employ a heuristic greedy algorithm to obtain a resource allocation scheme that meets radar performance constraints. Then utilize the Lagrangian dual method to solve the multi-user fairness maximization problem for communication users. Our experimental results confirm the effectiveness of the proposed algorithms.</p>","PeriodicalId":12040,"journal":{"name":"EURASIP Journal on Wireless Communications and Networking","volume":"37 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radio resource management for OFDM-based dual-function radar-communication: sum-rate and fairness\",\"authors\":\"Jia Zhu, Yuanhao Cui, Junsheng Mu, Zexuan Jing, Xiaojun Jing\",\"doi\":\"10.1186/s13638-024-02343-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper focuses on radio resource management (RRM) in multi-user dual-function radar communication (DFRC) systems using orthogonal frequency division multiplexing (OFDM) waveforms. We propose two RRM schemes, one from the perspective of sum rate maximization and the other from the perspective of user fairness maximization. These optimization problems are non-convex due to the presence of mixed integer terms, making them difficult to solve. To address these challenges, we have employed a decomposition approach to transform these two complex problems into separate, more readily solvable ones. In addressing the sum rate maximization problem, we initially introduce a heuristic greedy algorithm to obtain a resource allocation scheme that satisfies radar performance requirements. Subsequently, we utilize a cyclic iterative method along with KKT conditions to solve the sum rate maximization problem for communication users. Concerning the fairness maximization problem for communication users, we similarly employ a heuristic greedy algorithm to obtain a resource allocation scheme that meets radar performance constraints. Then utilize the Lagrangian dual method to solve the multi-user fairness maximization problem for communication users. Our experimental results confirm the effectiveness of the proposed algorithms.</p>\",\"PeriodicalId\":12040,\"journal\":{\"name\":\"EURASIP Journal on Wireless Communications and Networking\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURASIP Journal on Wireless Communications and Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1186/s13638-024-02343-x\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP Journal on Wireless Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s13638-024-02343-x","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Radio resource management for OFDM-based dual-function radar-communication: sum-rate and fairness
This paper focuses on radio resource management (RRM) in multi-user dual-function radar communication (DFRC) systems using orthogonal frequency division multiplexing (OFDM) waveforms. We propose two RRM schemes, one from the perspective of sum rate maximization and the other from the perspective of user fairness maximization. These optimization problems are non-convex due to the presence of mixed integer terms, making them difficult to solve. To address these challenges, we have employed a decomposition approach to transform these two complex problems into separate, more readily solvable ones. In addressing the sum rate maximization problem, we initially introduce a heuristic greedy algorithm to obtain a resource allocation scheme that satisfies radar performance requirements. Subsequently, we utilize a cyclic iterative method along with KKT conditions to solve the sum rate maximization problem for communication users. Concerning the fairness maximization problem for communication users, we similarly employ a heuristic greedy algorithm to obtain a resource allocation scheme that meets radar performance constraints. Then utilize the Lagrangian dual method to solve the multi-user fairness maximization problem for communication users. Our experimental results confirm the effectiveness of the proposed algorithms.
期刊介绍:
The overall aim of the EURASIP Journal on Wireless Communications and Networking (EURASIP JWCN) is to bring together science and applications of wireless communications and networking technologies with emphasis on signal processing techniques and tools. It is directed at both practicing engineers and academic researchers. EURASIP Journal on Wireless Communications and Networking will highlight the continued growth and new challenges in wireless technology, for both application development and basic research. Articles should emphasize original results relating to the theory and/or applications of wireless communications and networking. Review articles, especially those emphasizing multidisciplinary views of communications and networking, are also welcome. EURASIP Journal on Wireless Communications and Networking employs a paperless, electronic submission and evaluation system to promote a rapid turnaround in the peer-review process.
The journal is an Open Access journal since 2004.