Ming Li, J. Muhammad, U. Younas, Hadi Rezazadeh, Mohammad Ali Hosseinzadeh, Soheil Salahshour
{"title":"论分数非线性可积分耦合库拉雷方程的光波结构","authors":"Ming Li, J. Muhammad, U. Younas, Hadi Rezazadeh, Mohammad Ali Hosseinzadeh, Soheil Salahshour","doi":"10.1142/s0217984924503548","DOIUrl":null,"url":null,"abstract":"<p>This paper is mainly concerning the study of truncated M-fractional Kuralay equations that have applications in numerous fields, including nonlinear optics, ferromagnetic materials, signal processing, engineering fields and optical fibers. Due to its ability to clarify a wide range of sophisticated physical phenomena and reveal more dynamic structures of localized wave solutions, the Kuralay equation has captured a lot of attention in the research field. The newly designed integration methods, known as the modified Sardar subequation method and enhanced modified extended tanh expansion method are used as solving tools to validate the solutions. The goal of this study is to extract several kinds of optical solitons, such as mixed, dark, singular, bright-dark, bright, complex and combined solitons. Due to the many potential applications for superfast signal routing techniques and shorter light pulses in communications, the optical propagation of soliton in optical fibers is now a topic of significant interest. In nonlinear dispersive media, optical solitons are stretched electromagnetic waves that maintain their intensity due to a balance between the effects of dispersion and nonlinearity. In addition, exponential, periodic, hyperbolic solutions are generated. The applied approaches are efficient in explaining fractional nonlinear partial differential equations by providing pre-existing solutions and also producing new solutions by combining results from multiple processes. Additionally, we plot the contour, 2D, and 3D graphs with the associated parameter values to visualize the solutions. The results of this study show the effectiveness of the approaches adopted and help enhance comprehension of the nonlinear dynamical behavior of specific systems. We expect that a substantial amount of engineering model specialists will greatly benefit from our work. The findings demonstrate the efficacy, efficiency, and applicability of the computational method employed, particularly in dealing with intricate systems.</p>","PeriodicalId":18570,"journal":{"name":"Modern Physics Letters B","volume":"57 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the optical wave structures to the fractional nonlinear integrable coupled Kuralay equation\",\"authors\":\"Ming Li, J. Muhammad, U. Younas, Hadi Rezazadeh, Mohammad Ali Hosseinzadeh, Soheil Salahshour\",\"doi\":\"10.1142/s0217984924503548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper is mainly concerning the study of truncated M-fractional Kuralay equations that have applications in numerous fields, including nonlinear optics, ferromagnetic materials, signal processing, engineering fields and optical fibers. Due to its ability to clarify a wide range of sophisticated physical phenomena and reveal more dynamic structures of localized wave solutions, the Kuralay equation has captured a lot of attention in the research field. The newly designed integration methods, known as the modified Sardar subequation method and enhanced modified extended tanh expansion method are used as solving tools to validate the solutions. The goal of this study is to extract several kinds of optical solitons, such as mixed, dark, singular, bright-dark, bright, complex and combined solitons. Due to the many potential applications for superfast signal routing techniques and shorter light pulses in communications, the optical propagation of soliton in optical fibers is now a topic of significant interest. In nonlinear dispersive media, optical solitons are stretched electromagnetic waves that maintain their intensity due to a balance between the effects of dispersion and nonlinearity. In addition, exponential, periodic, hyperbolic solutions are generated. The applied approaches are efficient in explaining fractional nonlinear partial differential equations by providing pre-existing solutions and also producing new solutions by combining results from multiple processes. Additionally, we plot the contour, 2D, and 3D graphs with the associated parameter values to visualize the solutions. The results of this study show the effectiveness of the approaches adopted and help enhance comprehension of the nonlinear dynamical behavior of specific systems. We expect that a substantial amount of engineering model specialists will greatly benefit from our work. The findings demonstrate the efficacy, efficiency, and applicability of the computational method employed, particularly in dealing with intricate systems.</p>\",\"PeriodicalId\":18570,\"journal\":{\"name\":\"Modern Physics Letters B\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Physics Letters B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s0217984924503548\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217984924503548","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
本文主要涉及截短 M 分 Kuralay 方程的研究,该方程在非线性光学、铁磁材料、信号处理、工程领域和光纤等众多领域都有应用。由于库拉雷方程能够阐明各种复杂的物理现象,并揭示局部波解的更多动态结构,因此在研究领域备受关注。新设计的积分方法,即改良萨达尔子方程法和增强改良扩展 tanh 展开法,被用作验证解法的求解工具。本研究的目标是提取几种光学孤子,如混合孤子、暗孤子、奇异孤子、亮暗孤子、亮孤子、复孤子和组合孤子。由于超快信号路由技术和更短光脉冲在通信中的许多潜在应用,孤子在光纤中的光传播现在是一个备受关注的话题。在非线性色散介质中,光孤子是一种拉伸的电磁波,由于色散和非线性效应之间的平衡而保持其强度。此外,还会产生指数、周期和双曲解。所应用的方法不仅能提供已有的解,还能结合多个过程的结果产生新的解,从而有效地解释分数非线性偏微分方程。此外,我们还绘制了带有相关参数值的等值线图、二维图和三维图,以直观地显示解。这项研究的结果表明了所采用方法的有效性,并有助于加深对特定系统非线性动力学行为的理解。我们预计,大量工程模型专家将从我们的工作中受益匪浅。研究结果证明了所采用的计算方法的功效、效率和适用性,尤其是在处理复杂系统时。
On the optical wave structures to the fractional nonlinear integrable coupled Kuralay equation
This paper is mainly concerning the study of truncated M-fractional Kuralay equations that have applications in numerous fields, including nonlinear optics, ferromagnetic materials, signal processing, engineering fields and optical fibers. Due to its ability to clarify a wide range of sophisticated physical phenomena and reveal more dynamic structures of localized wave solutions, the Kuralay equation has captured a lot of attention in the research field. The newly designed integration methods, known as the modified Sardar subequation method and enhanced modified extended tanh expansion method are used as solving tools to validate the solutions. The goal of this study is to extract several kinds of optical solitons, such as mixed, dark, singular, bright-dark, bright, complex and combined solitons. Due to the many potential applications for superfast signal routing techniques and shorter light pulses in communications, the optical propagation of soliton in optical fibers is now a topic of significant interest. In nonlinear dispersive media, optical solitons are stretched electromagnetic waves that maintain their intensity due to a balance between the effects of dispersion and nonlinearity. In addition, exponential, periodic, hyperbolic solutions are generated. The applied approaches are efficient in explaining fractional nonlinear partial differential equations by providing pre-existing solutions and also producing new solutions by combining results from multiple processes. Additionally, we plot the contour, 2D, and 3D graphs with the associated parameter values to visualize the solutions. The results of this study show the effectiveness of the approaches adopted and help enhance comprehension of the nonlinear dynamical behavior of specific systems. We expect that a substantial amount of engineering model specialists will greatly benefit from our work. The findings demonstrate the efficacy, efficiency, and applicability of the computational method employed, particularly in dealing with intricate systems.
期刊介绍:
MPLB opens a channel for the fast circulation of important and useful research findings in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low-dimensional materials. The journal also contains a Brief Reviews section with the purpose of publishing short reports on the latest experimental findings and urgent new theoretical developments.