{"title":"基于跨层连接的安全帽佩戴检测方法","authors":"Gang Dong, Yefei Zhang, Weicheng Xie, Yong Huang","doi":"10.1007/s11554-024-01437-5","DOIUrl":null,"url":null,"abstract":"<p>Given the current safety helmet detection methods, the feature information of the small-scale safety helmet will be lost after the network model is convolved many times, resulting in the problem of missing detection of the safety helmet. To this end, an improved target detection algorithm of YOLOv5 is used to detect the wearing of safety helmets. Firstly, a new small-scale detection layer is added to the head of the network for multi-scale feature fusion, thereby increasing the receptive field area of the feature map to improve the model’s recognition of small targets. Secondly, a cross-layer connection is designed between the feature extraction network and the feature fusion network to enhance the fine-grained features of the target in the shallow layer of the network. Thirdly, a coordinate attention (CA) module is added to the cross-layer connection to capture the global information of the image and improve the localization ability of the target. Finally, the Normalized Wasserstein Distance (NWD) is used to measure the similarity between bounding boxes, replacing the intersection over union (IoU) method. The experimental results show that the improved model achieves 95.09% of the mAP value for safety helmet-wearing detection, which has a good effect on the recognition of small-sized safety helmets of different degrees in the construction work scene.</p>","PeriodicalId":51224,"journal":{"name":"Journal of Real-Time Image Processing","volume":"19 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A safety helmet-wearing detection method based on cross-layer connection\",\"authors\":\"Gang Dong, Yefei Zhang, Weicheng Xie, Yong Huang\",\"doi\":\"10.1007/s11554-024-01437-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given the current safety helmet detection methods, the feature information of the small-scale safety helmet will be lost after the network model is convolved many times, resulting in the problem of missing detection of the safety helmet. To this end, an improved target detection algorithm of YOLOv5 is used to detect the wearing of safety helmets. Firstly, a new small-scale detection layer is added to the head of the network for multi-scale feature fusion, thereby increasing the receptive field area of the feature map to improve the model’s recognition of small targets. Secondly, a cross-layer connection is designed between the feature extraction network and the feature fusion network to enhance the fine-grained features of the target in the shallow layer of the network. Thirdly, a coordinate attention (CA) module is added to the cross-layer connection to capture the global information of the image and improve the localization ability of the target. Finally, the Normalized Wasserstein Distance (NWD) is used to measure the similarity between bounding boxes, replacing the intersection over union (IoU) method. The experimental results show that the improved model achieves 95.09% of the mAP value for safety helmet-wearing detection, which has a good effect on the recognition of small-sized safety helmets of different degrees in the construction work scene.</p>\",\"PeriodicalId\":51224,\"journal\":{\"name\":\"Journal of Real-Time Image Processing\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Real-Time Image Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11554-024-01437-5\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Real-Time Image Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11554-024-01437-5","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A safety helmet-wearing detection method based on cross-layer connection
Given the current safety helmet detection methods, the feature information of the small-scale safety helmet will be lost after the network model is convolved many times, resulting in the problem of missing detection of the safety helmet. To this end, an improved target detection algorithm of YOLOv5 is used to detect the wearing of safety helmets. Firstly, a new small-scale detection layer is added to the head of the network for multi-scale feature fusion, thereby increasing the receptive field area of the feature map to improve the model’s recognition of small targets. Secondly, a cross-layer connection is designed between the feature extraction network and the feature fusion network to enhance the fine-grained features of the target in the shallow layer of the network. Thirdly, a coordinate attention (CA) module is added to the cross-layer connection to capture the global information of the image and improve the localization ability of the target. Finally, the Normalized Wasserstein Distance (NWD) is used to measure the similarity between bounding boxes, replacing the intersection over union (IoU) method. The experimental results show that the improved model achieves 95.09% of the mAP value for safety helmet-wearing detection, which has a good effect on the recognition of small-sized safety helmets of different degrees in the construction work scene.
期刊介绍:
Due to rapid advancements in integrated circuit technology, the rich theoretical results that have been developed by the image and video processing research community are now being increasingly applied in practical systems to solve real-world image and video processing problems. Such systems involve constraints placed not only on their size, cost, and power consumption, but also on the timeliness of the image data processed.
Examples of such systems are mobile phones, digital still/video/cell-phone cameras, portable media players, personal digital assistants, high-definition television, video surveillance systems, industrial visual inspection systems, medical imaging devices, vision-guided autonomous robots, spectral imaging systems, and many other real-time embedded systems. In these real-time systems, strict timing requirements demand that results are available within a certain interval of time as imposed by the application.
It is often the case that an image processing algorithm is developed and proven theoretically sound, presumably with a specific application in mind, but its practical applications and the detailed steps, methodology, and trade-off analysis required to achieve its real-time performance are not fully explored, leaving these critical and usually non-trivial issues for those wishing to employ the algorithm in a real-time system.
The Journal of Real-Time Image Processing is intended to bridge the gap between the theory and practice of image processing, serving the greater community of researchers, practicing engineers, and industrial professionals who deal with designing, implementing or utilizing image processing systems which must satisfy real-time design constraints.