SDPH:一种近乎实时地从大体积高分辨率光栅图像中进行路径孔空间检测的新技术

IF 2.9 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Real-Time Image Processing Pub Date : 2024-04-04 DOI:10.1007/s11554-024-01451-7
Murat Tasyurek
{"title":"SDPH:一种近乎实时地从大体积高分辨率光栅图像中进行路径孔空间检测的新技术","authors":"Murat Tasyurek","doi":"10.1007/s11554-024-01451-7","DOIUrl":null,"url":null,"abstract":"<p>Detecting and repairing road defects is crucial for road safety, vehicle maintenance, and enhancing tourism on well-maintained roads. However, monitoring all roads by vehicle incurs high costs. With the widespread use of remote sensing technologies, high-resolution satellite images offer a cost-effective alternative. This study proposes a new technique, SDPH, for automated detection of damaged roads from vast, high-resolution satellite images. In the SDPH technique, satellite images are organized in a pyramid grid file system, allowing deep learning methods to efficiently process them. The images, generated as <span>\\(256\\times 256\\)</span> dimensions, are stored in a directory with explicit location information. The SDPH technique employs a two-stage object detection models, utilizing classical and modified RCNNv3, YOLOv5, and YOLOv8. Classical RCNNv3, YOLOv5, and YOLOv8 and modified RCNNv3, YOLOv5, and YOLOv8 in the first stage for identifying roads, achieving f1 scores of 0.743, 0.716, 0.710, 0.955, 0.958, and 0.954, respectively. When the YOLOv5, with the highest f1 score, was fed to the second stage; modified RCNNv3, YOLOv5, and YOLOv8 detected road defects, achieving f1 scores of 0.957,0.971 and 0.964 in the second process. When the same CNN model was used for road and road defect detection in the proposed SDPH model, classical RCNNv3, improved RCNNv3, classical YOLOv5, improved YOLOv5, classical YOLOv8, improved RCNNv8 achieved micro f1 scores of 0.752, 0.956, 0.726, 0.969, 0.720 and 0.965, respectively. In addition, these models processed 11, 10, 33, 31, 37, and 36 FPS images by performing both stage operations, respectively. Evaluations on geotiff satellite images from Kayseri Metropolitan Municipality, ranging between 20 and 40 gigabytes, demonstrated the efficiency of the SDPH technique. Notably, the modified YOLOv5 outperformed, detecting paths and defects in 0.032 s with the micro f1 score of 0.969. Fine-tuning on TileCache enhanced f1 scores and reduced computational costs across all models.</p>","PeriodicalId":51224,"journal":{"name":"Journal of Real-Time Image Processing","volume":"30 1 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SDPH: a new technique for spatial detection of path holes from huge volume high-resolution raster images in near real-time\",\"authors\":\"Murat Tasyurek\",\"doi\":\"10.1007/s11554-024-01451-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Detecting and repairing road defects is crucial for road safety, vehicle maintenance, and enhancing tourism on well-maintained roads. However, monitoring all roads by vehicle incurs high costs. With the widespread use of remote sensing technologies, high-resolution satellite images offer a cost-effective alternative. This study proposes a new technique, SDPH, for automated detection of damaged roads from vast, high-resolution satellite images. In the SDPH technique, satellite images are organized in a pyramid grid file system, allowing deep learning methods to efficiently process them. The images, generated as <span>\\\\(256\\\\times 256\\\\)</span> dimensions, are stored in a directory with explicit location information. The SDPH technique employs a two-stage object detection models, utilizing classical and modified RCNNv3, YOLOv5, and YOLOv8. Classical RCNNv3, YOLOv5, and YOLOv8 and modified RCNNv3, YOLOv5, and YOLOv8 in the first stage for identifying roads, achieving f1 scores of 0.743, 0.716, 0.710, 0.955, 0.958, and 0.954, respectively. When the YOLOv5, with the highest f1 score, was fed to the second stage; modified RCNNv3, YOLOv5, and YOLOv8 detected road defects, achieving f1 scores of 0.957,0.971 and 0.964 in the second process. When the same CNN model was used for road and road defect detection in the proposed SDPH model, classical RCNNv3, improved RCNNv3, classical YOLOv5, improved YOLOv5, classical YOLOv8, improved RCNNv8 achieved micro f1 scores of 0.752, 0.956, 0.726, 0.969, 0.720 and 0.965, respectively. In addition, these models processed 11, 10, 33, 31, 37, and 36 FPS images by performing both stage operations, respectively. Evaluations on geotiff satellite images from Kayseri Metropolitan Municipality, ranging between 20 and 40 gigabytes, demonstrated the efficiency of the SDPH technique. Notably, the modified YOLOv5 outperformed, detecting paths and defects in 0.032 s with the micro f1 score of 0.969. Fine-tuning on TileCache enhanced f1 scores and reduced computational costs across all models.</p>\",\"PeriodicalId\":51224,\"journal\":{\"name\":\"Journal of Real-Time Image Processing\",\"volume\":\"30 1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Real-Time Image Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11554-024-01451-7\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Real-Time Image Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11554-024-01451-7","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

检测和修复道路缺陷对于道路安全、车辆维护以及在维护良好的道路上促进旅游业至关重要。然而,用车辆监测所有道路的成本很高。随着遥感技术的广泛应用,高分辨率卫星图像提供了一种具有成本效益的替代方法。本研究提出了一种新技术 SDPH,用于从广阔的高分辨率卫星图像中自动检测受损道路。在 SDPH 技术中,卫星图像被组织成一个金字塔网格文件系统,允许深度学习方法对其进行高效处理。生成的图像以(256/times 256/)的维度存储在一个带有明确位置信息的目录中。SDPH 技术采用两阶段物体检测模型,利用经典和改进的 RCNNv3、YOLOv5 和 YOLOv8。在识别道路的第一阶段,经典 RCNNv3、YOLOv5 和 YOLOv8 以及改进 RCNNv3、YOLOv5 和 YOLOv8 的 f1 分数分别为 0.743、0.716、0.710、0.955、0.958 和 0.954。当将 f1 分数最高的 YOLOv5 送入第二阶段时,修改后的 RCNNv3、YOLOv5 和 YOLOv8 检测出了道路缺陷,在第二过程中分别获得了 0.957、0.971 和 0.964 的 f1 分数。当在拟议的 SDPH 模型中使用相同的 CNN 模型进行道路和道路缺陷检测时,经典 RCNNv3、改进 RCNNv3、经典 YOLOv5、改进 YOLOv5、经典 YOLOv8、改进 RCNNv8 的微观 f1 分数分别为 0.752、0.956、0.726、0.969、0.720 和 0.965。此外,这些模型通过执行两个阶段的操作,分别处理了 11、10、33、31、37 和 36 幅 FPS 图像。对来自开塞利大都会的 20 至 40 千兆字节的 geotiff 卫星图像进行的评估证明了 SDPH 技术的效率。值得注意的是,改进后的 YOLOv5 性能更优,在 0.032 秒内就检测出了路径和缺陷,微型 f1 得分为 0.969。对 TileCache 的微调提高了 f1 分数,降低了所有模型的计算成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SDPH: a new technique for spatial detection of path holes from huge volume high-resolution raster images in near real-time

Detecting and repairing road defects is crucial for road safety, vehicle maintenance, and enhancing tourism on well-maintained roads. However, monitoring all roads by vehicle incurs high costs. With the widespread use of remote sensing technologies, high-resolution satellite images offer a cost-effective alternative. This study proposes a new technique, SDPH, for automated detection of damaged roads from vast, high-resolution satellite images. In the SDPH technique, satellite images are organized in a pyramid grid file system, allowing deep learning methods to efficiently process them. The images, generated as \(256\times 256\) dimensions, are stored in a directory with explicit location information. The SDPH technique employs a two-stage object detection models, utilizing classical and modified RCNNv3, YOLOv5, and YOLOv8. Classical RCNNv3, YOLOv5, and YOLOv8 and modified RCNNv3, YOLOv5, and YOLOv8 in the first stage for identifying roads, achieving f1 scores of 0.743, 0.716, 0.710, 0.955, 0.958, and 0.954, respectively. When the YOLOv5, with the highest f1 score, was fed to the second stage; modified RCNNv3, YOLOv5, and YOLOv8 detected road defects, achieving f1 scores of 0.957,0.971 and 0.964 in the second process. When the same CNN model was used for road and road defect detection in the proposed SDPH model, classical RCNNv3, improved RCNNv3, classical YOLOv5, improved YOLOv5, classical YOLOv8, improved RCNNv8 achieved micro f1 scores of 0.752, 0.956, 0.726, 0.969, 0.720 and 0.965, respectively. In addition, these models processed 11, 10, 33, 31, 37, and 36 FPS images by performing both stage operations, respectively. Evaluations on geotiff satellite images from Kayseri Metropolitan Municipality, ranging between 20 and 40 gigabytes, demonstrated the efficiency of the SDPH technique. Notably, the modified YOLOv5 outperformed, detecting paths and defects in 0.032 s with the micro f1 score of 0.969. Fine-tuning on TileCache enhanced f1 scores and reduced computational costs across all models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Real-Time Image Processing
Journal of Real-Time Image Processing COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
6.80
自引率
6.70%
发文量
68
审稿时长
6 months
期刊介绍: Due to rapid advancements in integrated circuit technology, the rich theoretical results that have been developed by the image and video processing research community are now being increasingly applied in practical systems to solve real-world image and video processing problems. Such systems involve constraints placed not only on their size, cost, and power consumption, but also on the timeliness of the image data processed. Examples of such systems are mobile phones, digital still/video/cell-phone cameras, portable media players, personal digital assistants, high-definition television, video surveillance systems, industrial visual inspection systems, medical imaging devices, vision-guided autonomous robots, spectral imaging systems, and many other real-time embedded systems. In these real-time systems, strict timing requirements demand that results are available within a certain interval of time as imposed by the application. It is often the case that an image processing algorithm is developed and proven theoretically sound, presumably with a specific application in mind, but its practical applications and the detailed steps, methodology, and trade-off analysis required to achieve its real-time performance are not fully explored, leaving these critical and usually non-trivial issues for those wishing to employ the algorithm in a real-time system. The Journal of Real-Time Image Processing is intended to bridge the gap between the theory and practice of image processing, serving the greater community of researchers, practicing engineers, and industrial professionals who deal with designing, implementing or utilizing image processing systems which must satisfy real-time design constraints.
期刊最新文献
High-precision real-time autonomous driving target detection based on YOLOv8 GMS-YOLO: an enhanced algorithm for water meter reading recognition in complex environments Fast rough mode decision algorithm and hardware architecture design for AV1 encoder AdaptoMixNet: detection of foreign objects on power transmission lines under severe weather conditions Mfdd: Multi-scale attention fatigue and distracted driving detector based on facial features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1