{"title":"SDPH:一种近乎实时地从大体积高分辨率光栅图像中进行路径孔空间检测的新技术","authors":"Murat Tasyurek","doi":"10.1007/s11554-024-01451-7","DOIUrl":null,"url":null,"abstract":"<p>Detecting and repairing road defects is crucial for road safety, vehicle maintenance, and enhancing tourism on well-maintained roads. However, monitoring all roads by vehicle incurs high costs. With the widespread use of remote sensing technologies, high-resolution satellite images offer a cost-effective alternative. This study proposes a new technique, SDPH, for automated detection of damaged roads from vast, high-resolution satellite images. In the SDPH technique, satellite images are organized in a pyramid grid file system, allowing deep learning methods to efficiently process them. The images, generated as <span>\\(256\\times 256\\)</span> dimensions, are stored in a directory with explicit location information. The SDPH technique employs a two-stage object detection models, utilizing classical and modified RCNNv3, YOLOv5, and YOLOv8. Classical RCNNv3, YOLOv5, and YOLOv8 and modified RCNNv3, YOLOv5, and YOLOv8 in the first stage for identifying roads, achieving f1 scores of 0.743, 0.716, 0.710, 0.955, 0.958, and 0.954, respectively. When the YOLOv5, with the highest f1 score, was fed to the second stage; modified RCNNv3, YOLOv5, and YOLOv8 detected road defects, achieving f1 scores of 0.957,0.971 and 0.964 in the second process. When the same CNN model was used for road and road defect detection in the proposed SDPH model, classical RCNNv3, improved RCNNv3, classical YOLOv5, improved YOLOv5, classical YOLOv8, improved RCNNv8 achieved micro f1 scores of 0.752, 0.956, 0.726, 0.969, 0.720 and 0.965, respectively. In addition, these models processed 11, 10, 33, 31, 37, and 36 FPS images by performing both stage operations, respectively. Evaluations on geotiff satellite images from Kayseri Metropolitan Municipality, ranging between 20 and 40 gigabytes, demonstrated the efficiency of the SDPH technique. Notably, the modified YOLOv5 outperformed, detecting paths and defects in 0.032 s with the micro f1 score of 0.969. Fine-tuning on TileCache enhanced f1 scores and reduced computational costs across all models.</p>","PeriodicalId":51224,"journal":{"name":"Journal of Real-Time Image Processing","volume":"30 1 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SDPH: a new technique for spatial detection of path holes from huge volume high-resolution raster images in near real-time\",\"authors\":\"Murat Tasyurek\",\"doi\":\"10.1007/s11554-024-01451-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Detecting and repairing road defects is crucial for road safety, vehicle maintenance, and enhancing tourism on well-maintained roads. However, monitoring all roads by vehicle incurs high costs. With the widespread use of remote sensing technologies, high-resolution satellite images offer a cost-effective alternative. This study proposes a new technique, SDPH, for automated detection of damaged roads from vast, high-resolution satellite images. In the SDPH technique, satellite images are organized in a pyramid grid file system, allowing deep learning methods to efficiently process them. The images, generated as <span>\\\\(256\\\\times 256\\\\)</span> dimensions, are stored in a directory with explicit location information. The SDPH technique employs a two-stage object detection models, utilizing classical and modified RCNNv3, YOLOv5, and YOLOv8. Classical RCNNv3, YOLOv5, and YOLOv8 and modified RCNNv3, YOLOv5, and YOLOv8 in the first stage for identifying roads, achieving f1 scores of 0.743, 0.716, 0.710, 0.955, 0.958, and 0.954, respectively. When the YOLOv5, with the highest f1 score, was fed to the second stage; modified RCNNv3, YOLOv5, and YOLOv8 detected road defects, achieving f1 scores of 0.957,0.971 and 0.964 in the second process. When the same CNN model was used for road and road defect detection in the proposed SDPH model, classical RCNNv3, improved RCNNv3, classical YOLOv5, improved YOLOv5, classical YOLOv8, improved RCNNv8 achieved micro f1 scores of 0.752, 0.956, 0.726, 0.969, 0.720 and 0.965, respectively. In addition, these models processed 11, 10, 33, 31, 37, and 36 FPS images by performing both stage operations, respectively. Evaluations on geotiff satellite images from Kayseri Metropolitan Municipality, ranging between 20 and 40 gigabytes, demonstrated the efficiency of the SDPH technique. Notably, the modified YOLOv5 outperformed, detecting paths and defects in 0.032 s with the micro f1 score of 0.969. Fine-tuning on TileCache enhanced f1 scores and reduced computational costs across all models.</p>\",\"PeriodicalId\":51224,\"journal\":{\"name\":\"Journal of Real-Time Image Processing\",\"volume\":\"30 1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Real-Time Image Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11554-024-01451-7\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Real-Time Image Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11554-024-01451-7","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
SDPH: a new technique for spatial detection of path holes from huge volume high-resolution raster images in near real-time
Detecting and repairing road defects is crucial for road safety, vehicle maintenance, and enhancing tourism on well-maintained roads. However, monitoring all roads by vehicle incurs high costs. With the widespread use of remote sensing technologies, high-resolution satellite images offer a cost-effective alternative. This study proposes a new technique, SDPH, for automated detection of damaged roads from vast, high-resolution satellite images. In the SDPH technique, satellite images are organized in a pyramid grid file system, allowing deep learning methods to efficiently process them. The images, generated as \(256\times 256\) dimensions, are stored in a directory with explicit location information. The SDPH technique employs a two-stage object detection models, utilizing classical and modified RCNNv3, YOLOv5, and YOLOv8. Classical RCNNv3, YOLOv5, and YOLOv8 and modified RCNNv3, YOLOv5, and YOLOv8 in the first stage for identifying roads, achieving f1 scores of 0.743, 0.716, 0.710, 0.955, 0.958, and 0.954, respectively. When the YOLOv5, with the highest f1 score, was fed to the second stage; modified RCNNv3, YOLOv5, and YOLOv8 detected road defects, achieving f1 scores of 0.957,0.971 and 0.964 in the second process. When the same CNN model was used for road and road defect detection in the proposed SDPH model, classical RCNNv3, improved RCNNv3, classical YOLOv5, improved YOLOv5, classical YOLOv8, improved RCNNv8 achieved micro f1 scores of 0.752, 0.956, 0.726, 0.969, 0.720 and 0.965, respectively. In addition, these models processed 11, 10, 33, 31, 37, and 36 FPS images by performing both stage operations, respectively. Evaluations on geotiff satellite images from Kayseri Metropolitan Municipality, ranging between 20 and 40 gigabytes, demonstrated the efficiency of the SDPH technique. Notably, the modified YOLOv5 outperformed, detecting paths and defects in 0.032 s with the micro f1 score of 0.969. Fine-tuning on TileCache enhanced f1 scores and reduced computational costs across all models.
期刊介绍:
Due to rapid advancements in integrated circuit technology, the rich theoretical results that have been developed by the image and video processing research community are now being increasingly applied in practical systems to solve real-world image and video processing problems. Such systems involve constraints placed not only on their size, cost, and power consumption, but also on the timeliness of the image data processed.
Examples of such systems are mobile phones, digital still/video/cell-phone cameras, portable media players, personal digital assistants, high-definition television, video surveillance systems, industrial visual inspection systems, medical imaging devices, vision-guided autonomous robots, spectral imaging systems, and many other real-time embedded systems. In these real-time systems, strict timing requirements demand that results are available within a certain interval of time as imposed by the application.
It is often the case that an image processing algorithm is developed and proven theoretically sound, presumably with a specific application in mind, but its practical applications and the detailed steps, methodology, and trade-off analysis required to achieve its real-time performance are not fully explored, leaving these critical and usually non-trivial issues for those wishing to employ the algorithm in a real-time system.
The Journal of Real-Time Image Processing is intended to bridge the gap between the theory and practice of image processing, serving the greater community of researchers, practicing engineers, and industrial professionals who deal with designing, implementing or utilizing image processing systems which must satisfy real-time design constraints.