Lea Boßmann, Nikolai Leopold, David Mitrouskas, Sören Petrat
{"title":"关于均场极限中玻色子束缚能的说明","authors":"Lea Boßmann, Nikolai Leopold, David Mitrouskas, Sören Petrat","doi":"10.1007/s10955-024-03260-5","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a gas of <i>N</i> weakly interacting bosons in the ground state. Such gases exhibit Bose–Einstein condensation. The binding energy is defined as the energy it takes to remove one particle from the gas. In this article, we prove an asymptotic expansion for the binding energy, and compute the first orders explicitly for the homogeneous gas. Our result addresses in particular a conjecture by Nam (Lett Math Phys 108(1):141–159, 2018), and provides an asymptotic expansion of the ionization energy of bosonic atoms.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10955-024-03260-5.pdf","citationCount":"0","resultStr":"{\"title\":\"A Note on the Binding Energy for Bosons in the Mean-Field Limit\",\"authors\":\"Lea Boßmann, Nikolai Leopold, David Mitrouskas, Sören Petrat\",\"doi\":\"10.1007/s10955-024-03260-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider a gas of <i>N</i> weakly interacting bosons in the ground state. Such gases exhibit Bose–Einstein condensation. The binding energy is defined as the energy it takes to remove one particle from the gas. In this article, we prove an asymptotic expansion for the binding energy, and compute the first orders explicitly for the homogeneous gas. Our result addresses in particular a conjecture by Nam (Lett Math Phys 108(1):141–159, 2018), and provides an asymptotic expansion of the ionization energy of bosonic atoms.</p></div>\",\"PeriodicalId\":667,\"journal\":{\"name\":\"Journal of Statistical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10955-024-03260-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10955-024-03260-5\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-024-03260-5","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
摘要
我们考虑的是处于基态的 N 个弱相互作用玻色子气体。这种气体表现出玻色-爱因斯坦凝聚。结合能被定义为从气体中移除一个粒子所需的能量。在本文中,我们证明了结合能的渐近展开,并明确计算了均相气体的一阶。我们的结果特别解决了 Nam 的猜想(Lett Math Phys 108(1):141-159, 2018),并提供了玻色原子电离能的渐近展开。
A Note on the Binding Energy for Bosons in the Mean-Field Limit
We consider a gas of N weakly interacting bosons in the ground state. Such gases exhibit Bose–Einstein condensation. The binding energy is defined as the energy it takes to remove one particle from the gas. In this article, we prove an asymptotic expansion for the binding energy, and compute the first orders explicitly for the homogeneous gas. Our result addresses in particular a conjecture by Nam (Lett Math Phys 108(1):141–159, 2018), and provides an asymptotic expansion of the ionization energy of bosonic atoms.
期刊介绍:
The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.