Abdullahi A. Yusuf, Christian W. W. Pirk, Anja Buttstedt
{"title":"蜜蜂(Apis mellifera)固醇平衡基因在工蜂食用果冻生产腺体中的表达","authors":"Abdullahi A. Yusuf, Christian W. W. Pirk, Anja Buttstedt","doi":"10.1002/jez.2813","DOIUrl":null,"url":null,"abstract":"<p>Adult workers of Western honey bees (<i>Apis mellifera</i> L.) acquire sterols from their pollen diet. These food sterols are transported by the hemolymph to peripheral tissues such as the mandibular and the hypopharyngeal glands in the worker bees' heads that secrete food jelly which is fed to developing larvae. As sterols are obligatory components of biological membranes and essential precursors for molting hormone synthesis in insects, they are indispensable to normal larval development. Thus, the study of sterol delivery to larvae is important for a full understanding of honey bee larval nutrition and development. Whereas hypopharyngeal glands only require sterols for their membrane integrity, mandibular glands add sterols, primarily 24-methylenecholesterol, to its secretion. For this, sterols must be transported through the glandular epithelial cells. We have analyzed for the first time in <i>A. mellifera</i> the expression of genes which are involved in intracellular movement of sterols. Mandibular and hypopharyngeal glands were dissected from newly emerged bees, 6-day-old nurse bees that feed larvae and 26-day-old forager bees. The expression of seven genes involved in intracellular sterol metabolism was measured with quantitative real-time PCR. Relative transcript abundance of sterol metabolism genes was significantly influenced by the age of workers and specific genes but not by gland type. Newly emerged bees had significantly more transcripts for six out of seven genes than older bees indicating that the bulk of the proteins needed for sterol metabolism are produced directly after emergence.</p>","PeriodicalId":15711,"journal":{"name":"Journal of experimental zoology. Part A, Ecological and integrative physiology","volume":"341 5","pages":"627-641"},"PeriodicalIF":1.9000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jez.2813","citationCount":"0","resultStr":"{\"title\":\"Expression of honey bee (Apis mellifera) sterol homeostasis genes in food jelly producing glands of workers\",\"authors\":\"Abdullahi A. Yusuf, Christian W. W. Pirk, Anja Buttstedt\",\"doi\":\"10.1002/jez.2813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Adult workers of Western honey bees (<i>Apis mellifera</i> L.) acquire sterols from their pollen diet. These food sterols are transported by the hemolymph to peripheral tissues such as the mandibular and the hypopharyngeal glands in the worker bees' heads that secrete food jelly which is fed to developing larvae. As sterols are obligatory components of biological membranes and essential precursors for molting hormone synthesis in insects, they are indispensable to normal larval development. Thus, the study of sterol delivery to larvae is important for a full understanding of honey bee larval nutrition and development. Whereas hypopharyngeal glands only require sterols for their membrane integrity, mandibular glands add sterols, primarily 24-methylenecholesterol, to its secretion. For this, sterols must be transported through the glandular epithelial cells. We have analyzed for the first time in <i>A. mellifera</i> the expression of genes which are involved in intracellular movement of sterols. Mandibular and hypopharyngeal glands were dissected from newly emerged bees, 6-day-old nurse bees that feed larvae and 26-day-old forager bees. The expression of seven genes involved in intracellular sterol metabolism was measured with quantitative real-time PCR. Relative transcript abundance of sterol metabolism genes was significantly influenced by the age of workers and specific genes but not by gland type. Newly emerged bees had significantly more transcripts for six out of seven genes than older bees indicating that the bulk of the proteins needed for sterol metabolism are produced directly after emergence.</p>\",\"PeriodicalId\":15711,\"journal\":{\"name\":\"Journal of experimental zoology. Part A, Ecological and integrative physiology\",\"volume\":\"341 5\",\"pages\":\"627-641\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jez.2813\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of experimental zoology. Part A, Ecological and integrative physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jez.2813\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of experimental zoology. Part A, Ecological and integrative physiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jez.2813","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
Expression of honey bee (Apis mellifera) sterol homeostasis genes in food jelly producing glands of workers
Adult workers of Western honey bees (Apis mellifera L.) acquire sterols from their pollen diet. These food sterols are transported by the hemolymph to peripheral tissues such as the mandibular and the hypopharyngeal glands in the worker bees' heads that secrete food jelly which is fed to developing larvae. As sterols are obligatory components of biological membranes and essential precursors for molting hormone synthesis in insects, they are indispensable to normal larval development. Thus, the study of sterol delivery to larvae is important for a full understanding of honey bee larval nutrition and development. Whereas hypopharyngeal glands only require sterols for their membrane integrity, mandibular glands add sterols, primarily 24-methylenecholesterol, to its secretion. For this, sterols must be transported through the glandular epithelial cells. We have analyzed for the first time in A. mellifera the expression of genes which are involved in intracellular movement of sterols. Mandibular and hypopharyngeal glands were dissected from newly emerged bees, 6-day-old nurse bees that feed larvae and 26-day-old forager bees. The expression of seven genes involved in intracellular sterol metabolism was measured with quantitative real-time PCR. Relative transcript abundance of sterol metabolism genes was significantly influenced by the age of workers and specific genes but not by gland type. Newly emerged bees had significantly more transcripts for six out of seven genes than older bees indicating that the bulk of the proteins needed for sterol metabolism are produced directly after emergence.
期刊介绍:
The Journal of Experimental Zoology – A publishes articles at the interface between Development, Physiology, Ecology and Evolution. Contributions that help to reveal how molecular, functional and ecological variation relate to one another are particularly welcome. The Journal publishes original research in the form of rapid communications or regular research articles, as well as perspectives and reviews on topics pertaining to the scope of the Journal. Acceptable articles are limited to studies on animals.