带测量误差的矩阵变量广义线性模型

IF 1.2 3区 数学 Q2 STATISTICS & PROBABILITY Statistical Papers Pub Date : 2024-04-06 DOI:10.1007/s00362-024-01540-6
Tianqi Sun, Weiyu Li, Lu Lin
{"title":"带测量误差的矩阵变量广义线性模型","authors":"Tianqi Sun, Weiyu Li, Lu Lin","doi":"10.1007/s00362-024-01540-6","DOIUrl":null,"url":null,"abstract":"<p>Matrix-variate generalized linear model (mvGLM) has been investigated successfully under the framework of tensor generalized linear model, because matrix-form data can be regarded as a specific tensor (2-dimension). But there are few works focusing on matrix-form data with measurement error (ME), since tensor in conjunction with ME is relatively complex in structure. In this paper we introduce a mvGLM to primarily explore the influence of ME in the model with matrix-form data. We calculate the asymptotic bias based on error-prone mvGLM, and then develop bias-correction methods to tackle the affect of ME. Statistical properties for all methods are established, and the practical performance of all methods is further evaluated in analysis on synthetic and real data sets.</p>","PeriodicalId":51166,"journal":{"name":"Statistical Papers","volume":"55 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Matrix-variate generalized linear model with measurement error\",\"authors\":\"Tianqi Sun, Weiyu Li, Lu Lin\",\"doi\":\"10.1007/s00362-024-01540-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Matrix-variate generalized linear model (mvGLM) has been investigated successfully under the framework of tensor generalized linear model, because matrix-form data can be regarded as a specific tensor (2-dimension). But there are few works focusing on matrix-form data with measurement error (ME), since tensor in conjunction with ME is relatively complex in structure. In this paper we introduce a mvGLM to primarily explore the influence of ME in the model with matrix-form data. We calculate the asymptotic bias based on error-prone mvGLM, and then develop bias-correction methods to tackle the affect of ME. Statistical properties for all methods are established, and the practical performance of all methods is further evaluated in analysis on synthetic and real data sets.</p>\",\"PeriodicalId\":51166,\"journal\":{\"name\":\"Statistical Papers\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Papers\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00362-024-01540-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Papers","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00362-024-01540-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

在张量广义线性模型的框架下,矩阵变量广义线性模型(mvGLM)已经得到了成功的研究,因为矩阵形式的数据可以被视为一个特定的张量(二维)。但是,由于带有测量误差(ME)的张量结构相对复杂,因此关注带有测量误差(ME)的矩阵形式数据的研究很少。在本文中,我们引入了 mvGLM,主要探讨 ME 在矩阵形式数据模型中的影响。我们基于易出错的 mvGLM 计算渐近偏差,然后开发偏差修正方法来解决 ME 的影响。我们建立了所有方法的统计特性,并通过对合成数据集和真实数据集的分析进一步评估了所有方法的实际性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Matrix-variate generalized linear model with measurement error

Matrix-variate generalized linear model (mvGLM) has been investigated successfully under the framework of tensor generalized linear model, because matrix-form data can be regarded as a specific tensor (2-dimension). But there are few works focusing on matrix-form data with measurement error (ME), since tensor in conjunction with ME is relatively complex in structure. In this paper we introduce a mvGLM to primarily explore the influence of ME in the model with matrix-form data. We calculate the asymptotic bias based on error-prone mvGLM, and then develop bias-correction methods to tackle the affect of ME. Statistical properties for all methods are established, and the practical performance of all methods is further evaluated in analysis on synthetic and real data sets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistical Papers
Statistical Papers 数学-统计学与概率论
CiteScore
2.80
自引率
7.70%
发文量
95
审稿时长
6-12 weeks
期刊介绍: The journal Statistical Papers addresses itself to all persons and organizations that have to deal with statistical methods in their own field of work. It attempts to provide a forum for the presentation and critical assessment of statistical methods, in particular for the discussion of their methodological foundations as well as their potential applications. Methods that have broad applications will be preferred. However, special attention is given to those statistical methods which are relevant to the economic and social sciences. In addition to original research papers, readers will find survey articles, short notes, reports on statistical software, problem section, and book reviews.
期刊最新文献
The distribution of power-related random variables (and their use in clinical trials) The cost of sequential adaptation and the lower bound for mean squared error Nested strong orthogonal arrays Tests for time-varying coefficient spatial autoregressive panel data model with fixed effects On the consistency of supervised learning with missing values
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1