{"title":"用于整合和分析多平台高维基因组学数据的贝叶斯收缩模型","authors":"Hao Xue, Sounak Chakraborty, Tanujit Dey","doi":"10.1002/sam.11682","DOIUrl":null,"url":null,"abstract":"With the increasing availability of biomedical data from multiple platforms of the same patients in clinical research, such as epigenomics, gene expression, and clinical features, there is a growing need for statistical methods that can jointly analyze data from different platforms to provide complementary information for clinical studies. In this paper, we propose a two‐stage hierarchical Bayesian model that integrates high‐dimensional biomedical data from diverse platforms to select biomarkers associated with clinical outcomes of interest. In the first stage, we use Expectation Maximization‐based approach to learn the regulating mechanism between epigenomics (e.g., gene methylation) and gene expression while considering functional gene annotations. In the second stage, we group genes based on the regulating mechanism learned in the first stage. Then, we apply a group‐wise penalty to select genes significantly associated with clinical outcomes while incorporating clinical features. Simulation studies suggest that our model‐based data integration method shows lower false positives in selecting predictive variables compared with existing method. Moreover, real data analysis based on a glioblastoma (GBM) dataset reveals our method's potential to detect genes associated with GBM survival with higher accuracy than the existing method. Moreover, most of the selected biomarkers are crucial in GBM prognosis as confirmed by existing literature.","PeriodicalId":48684,"journal":{"name":"Statistical Analysis and Data Mining","volume":"8 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian shrinkage models for integration and analysis of multiplatform high‐dimensional genomics data\",\"authors\":\"Hao Xue, Sounak Chakraborty, Tanujit Dey\",\"doi\":\"10.1002/sam.11682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the increasing availability of biomedical data from multiple platforms of the same patients in clinical research, such as epigenomics, gene expression, and clinical features, there is a growing need for statistical methods that can jointly analyze data from different platforms to provide complementary information for clinical studies. In this paper, we propose a two‐stage hierarchical Bayesian model that integrates high‐dimensional biomedical data from diverse platforms to select biomarkers associated with clinical outcomes of interest. In the first stage, we use Expectation Maximization‐based approach to learn the regulating mechanism between epigenomics (e.g., gene methylation) and gene expression while considering functional gene annotations. In the second stage, we group genes based on the regulating mechanism learned in the first stage. Then, we apply a group‐wise penalty to select genes significantly associated with clinical outcomes while incorporating clinical features. Simulation studies suggest that our model‐based data integration method shows lower false positives in selecting predictive variables compared with existing method. Moreover, real data analysis based on a glioblastoma (GBM) dataset reveals our method's potential to detect genes associated with GBM survival with higher accuracy than the existing method. Moreover, most of the selected biomarkers are crucial in GBM prognosis as confirmed by existing literature.\",\"PeriodicalId\":48684,\"journal\":{\"name\":\"Statistical Analysis and Data Mining\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Analysis and Data Mining\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1002/sam.11682\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/sam.11682","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Bayesian shrinkage models for integration and analysis of multiplatform high‐dimensional genomics data
With the increasing availability of biomedical data from multiple platforms of the same patients in clinical research, such as epigenomics, gene expression, and clinical features, there is a growing need for statistical methods that can jointly analyze data from different platforms to provide complementary information for clinical studies. In this paper, we propose a two‐stage hierarchical Bayesian model that integrates high‐dimensional biomedical data from diverse platforms to select biomarkers associated with clinical outcomes of interest. In the first stage, we use Expectation Maximization‐based approach to learn the regulating mechanism between epigenomics (e.g., gene methylation) and gene expression while considering functional gene annotations. In the second stage, we group genes based on the regulating mechanism learned in the first stage. Then, we apply a group‐wise penalty to select genes significantly associated with clinical outcomes while incorporating clinical features. Simulation studies suggest that our model‐based data integration method shows lower false positives in selecting predictive variables compared with existing method. Moreover, real data analysis based on a glioblastoma (GBM) dataset reveals our method's potential to detect genes associated with GBM survival with higher accuracy than the existing method. Moreover, most of the selected biomarkers are crucial in GBM prognosis as confirmed by existing literature.
期刊介绍:
Statistical Analysis and Data Mining addresses the broad area of data analysis, including statistical approaches, machine learning, data mining, and applications. Topics include statistical and computational approaches for analyzing massive and complex datasets, novel statistical and/or machine learning methods and theory, and state-of-the-art applications with high impact. Of special interest are articles that describe innovative analytical techniques, and discuss their application to real problems, in such a way that they are accessible and beneficial to domain experts across science, engineering, and commerce.
The focus of the journal is on papers which satisfy one or more of the following criteria:
Solve data analysis problems associated with massive, complex datasets
Develop innovative statistical approaches, machine learning algorithms, or methods integrating ideas across disciplines, e.g., statistics, computer science, electrical engineering, operation research.
Formulate and solve high-impact real-world problems which challenge existing paradigms via new statistical and/or computational models
Provide survey to prominent research topics.