{"title":"嵌岩桩的实验和实证研究","authors":"V. C. Maralapalle, R. Hegde","doi":"10.1007/s11204-024-09943-1","DOIUrl":null,"url":null,"abstract":"<p>A systematic correlation is established between the axial load-carrying capacity of the socketed piles and empirical methods. The axial load-carrying capabilities were calculated with the help of pile load tests for ten single piles in Navi Mumbai, India. Pile load tests were carried out to evaluate the skin friction and base resistance in overlying soil and rock. The test results of axially loaded bored piles socketed into the rock are mentioned in this paper. The pile socket involved rocks of various strengths such as gypsum, limestone, and basalt. In reality, axial capacity is calculated from skin friction of the pile, which occurs owing to a very small settlement in the rock socket. The unconfined compressive strength of the rock is collected from the laboratory test. The load-bearing capability of the socketed piles is determined using several empirical methods, which are usually evaluated by a back-assessment of the in-situ pile load test. However, the significant load-carrying capacity values derived from empirical correlations are found to be reasonably good compared with those estimated from pile load tests.</p>","PeriodicalId":21918,"journal":{"name":"Soil Mechanics and Foundation Engineering","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and Empirical Study on Piles Socketed Into the Rock\",\"authors\":\"V. C. Maralapalle, R. Hegde\",\"doi\":\"10.1007/s11204-024-09943-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A systematic correlation is established between the axial load-carrying capacity of the socketed piles and empirical methods. The axial load-carrying capabilities were calculated with the help of pile load tests for ten single piles in Navi Mumbai, India. Pile load tests were carried out to evaluate the skin friction and base resistance in overlying soil and rock. The test results of axially loaded bored piles socketed into the rock are mentioned in this paper. The pile socket involved rocks of various strengths such as gypsum, limestone, and basalt. In reality, axial capacity is calculated from skin friction of the pile, which occurs owing to a very small settlement in the rock socket. The unconfined compressive strength of the rock is collected from the laboratory test. The load-bearing capability of the socketed piles is determined using several empirical methods, which are usually evaluated by a back-assessment of the in-situ pile load test. However, the significant load-carrying capacity values derived from empirical correlations are found to be reasonably good compared with those estimated from pile load tests.</p>\",\"PeriodicalId\":21918,\"journal\":{\"name\":\"Soil Mechanics and Foundation Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil Mechanics and Foundation Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11204-024-09943-1\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Mechanics and Foundation Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11204-024-09943-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Experimental and Empirical Study on Piles Socketed Into the Rock
A systematic correlation is established between the axial load-carrying capacity of the socketed piles and empirical methods. The axial load-carrying capabilities were calculated with the help of pile load tests for ten single piles in Navi Mumbai, India. Pile load tests were carried out to evaluate the skin friction and base resistance in overlying soil and rock. The test results of axially loaded bored piles socketed into the rock are mentioned in this paper. The pile socket involved rocks of various strengths such as gypsum, limestone, and basalt. In reality, axial capacity is calculated from skin friction of the pile, which occurs owing to a very small settlement in the rock socket. The unconfined compressive strength of the rock is collected from the laboratory test. The load-bearing capability of the socketed piles is determined using several empirical methods, which are usually evaluated by a back-assessment of the in-situ pile load test. However, the significant load-carrying capacity values derived from empirical correlations are found to be reasonably good compared with those estimated from pile load tests.
期刊介绍:
Soil Mechanics and Foundation Engineering provides the Western engineer with a look at Russian advances in heavy construction techniques. Detailed contributions by experienced civil engineers offer insights into current difficulties in the field, applicable innovative solutions, and recently developed guidelines for soil analysis and foundation design.