从电磁非最小麦克斯韦-高斯-波奈耦合宇宙学中的观测结果估算幂律指数

IF 10.2 4区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Journal of High Energy Astrophysics Pub Date : 2024-04-06 DOI:10.1016/j.jheap.2024.04.002
Rami Ahmad El-Nabulsi , Waranont Anukool
{"title":"从电磁非最小麦克斯韦-高斯-波奈耦合宇宙学中的观测结果估算幂律指数","authors":"Rami Ahmad El-Nabulsi ,&nbsp;Waranont Anukool","doi":"10.1016/j.jheap.2024.04.002","DOIUrl":null,"url":null,"abstract":"<div><p>We discuss a generalized non-minimal Maxwell-Gauss-Bonnet power-law cosmological model characterized by the presence of electromagnetic field and variable cosmological and gravitational constant. We analyze the late-time dynamics characterized by power-law solutions. The model is constrained with local gravitational acceleration measurements, the SH0ES project which estimate the Hubble parameter, Planck TT, TE, EE + low <em>E</em> +lensing +SNe+ BAO data which estimate the EoS parameter and data coming from distant supernovae type Ia, the Hubble function <span><math><mrow><mi>H</mi><mo>(</mo><mi>z</mi><mo>)</mo></mrow></math></span> measurements and information coming from the Alcock-Paczynski test which estimate the numerical range of the non-minimal coupling parameter. By adopting a variable cosmological and gravitational constants, it was found that the universe is acceleratedly expanding with time and dominated by dark/phantom energy and an electromagnetic field comparable to the cosmological lambda. The variations of the gravitational constant time agree with several phenomenological theories including the entropic and holographic principle. The final fate of an asymptotically static universe was found also to be a plausible scenario in the model discussed.</p></div>","PeriodicalId":54265,"journal":{"name":"Journal of High Energy Astrophysics","volume":"42 ","pages":"Pages 104-114"},"PeriodicalIF":10.2000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating power-law exponents from observations in electromagnetic non-minimal Maxwell-Gauss-Bonnet coupling cosmology\",\"authors\":\"Rami Ahmad El-Nabulsi ,&nbsp;Waranont Anukool\",\"doi\":\"10.1016/j.jheap.2024.04.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We discuss a generalized non-minimal Maxwell-Gauss-Bonnet power-law cosmological model characterized by the presence of electromagnetic field and variable cosmological and gravitational constant. We analyze the late-time dynamics characterized by power-law solutions. The model is constrained with local gravitational acceleration measurements, the SH0ES project which estimate the Hubble parameter, Planck TT, TE, EE + low <em>E</em> +lensing +SNe+ BAO data which estimate the EoS parameter and data coming from distant supernovae type Ia, the Hubble function <span><math><mrow><mi>H</mi><mo>(</mo><mi>z</mi><mo>)</mo></mrow></math></span> measurements and information coming from the Alcock-Paczynski test which estimate the numerical range of the non-minimal coupling parameter. By adopting a variable cosmological and gravitational constants, it was found that the universe is acceleratedly expanding with time and dominated by dark/phantom energy and an electromagnetic field comparable to the cosmological lambda. The variations of the gravitational constant time agree with several phenomenological theories including the entropic and holographic principle. The final fate of an asymptotically static universe was found also to be a plausible scenario in the model discussed.</p></div>\",\"PeriodicalId\":54265,\"journal\":{\"name\":\"Journal of High Energy Astrophysics\",\"volume\":\"42 \",\"pages\":\"Pages 104-114\"},\"PeriodicalIF\":10.2000,\"publicationDate\":\"2024-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Astrophysics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214404824000247\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214404824000247","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

我们讨论了一个广义的非最小麦克斯韦-高斯-波内特幂律宇宙学模型,其特征是存在电磁场和可变宇宙学常数和引力常数。我们分析了以幂律解为特征的晚期动力学。该模型受到以下数据的约束:本地重力加速度测量数据;估计哈勃参数的 SH0ES 项目;估计 EoS 参数的普朗克 TT、TE、EE + 低 E +lensing +SNe+ BAO 数据;来自遥远的 Ia 型超新星的数据;哈勃函数 H(z) 测量数据;以及来自估计非最小耦合参数数值范围的 Alcock-Paczynski 试验的信息。通过采用可变的宇宙学常数和引力常数,发现宇宙随着时间加速膨胀,并由暗能量/象能量和与宇宙学λ相当的电磁场主导。引力常数时间的变化与包括熵原理和全息原理在内的几种现象学理论一致。研究发现,在所讨论的模型中,渐近静态宇宙的最终命运也是一种可信的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimating power-law exponents from observations in electromagnetic non-minimal Maxwell-Gauss-Bonnet coupling cosmology

We discuss a generalized non-minimal Maxwell-Gauss-Bonnet power-law cosmological model characterized by the presence of electromagnetic field and variable cosmological and gravitational constant. We analyze the late-time dynamics characterized by power-law solutions. The model is constrained with local gravitational acceleration measurements, the SH0ES project which estimate the Hubble parameter, Planck TT, TE, EE + low E +lensing +SNe+ BAO data which estimate the EoS parameter and data coming from distant supernovae type Ia, the Hubble function H(z) measurements and information coming from the Alcock-Paczynski test which estimate the numerical range of the non-minimal coupling parameter. By adopting a variable cosmological and gravitational constants, it was found that the universe is acceleratedly expanding with time and dominated by dark/phantom energy and an electromagnetic field comparable to the cosmological lambda. The variations of the gravitational constant time agree with several phenomenological theories including the entropic and holographic principle. The final fate of an asymptotically static universe was found also to be a plausible scenario in the model discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of High Energy Astrophysics
Journal of High Energy Astrophysics Earth and Planetary Sciences-Space and Planetary Science
CiteScore
9.70
自引率
5.30%
发文量
38
审稿时长
65 days
期刊介绍: The journal welcomes manuscripts on theoretical models, simulations, and observations of highly energetic astrophysical objects both in our Galaxy and beyond. Among those, black holes at all scales, neutron stars, pulsars and their nebula, binaries, novae and supernovae, their remnants, active galaxies, and clusters are just a few examples. The journal will consider research across the whole electromagnetic spectrum, as well as research using various messengers, such as gravitational waves or neutrinos. Effects of high-energy phenomena on cosmology and star-formation, results from dedicated surveys expanding the knowledge of extreme environments, and astrophysical implications of dark matter are also welcomed topics.
期刊最新文献
Cooling of neutron stars in soft X-ray transients with realistic crust composition Superflare on a rapidly-rotating solar-type star captured in X-rays The properties of the Galactic hard X-ray and soft γ-ray background based on 20 years of INTEGRAL/IBIS observations Revisiting thermodynamic topology of Hawking-Page and Davies type phase transitions Strong gravitational lensing by rotating quantum-corrected black holes: Insights and constraints from EHT observations of M87* and Sgr A*
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1