{"title":"符合 IDDSI 标准的含口服造影剂的食谱,用于放射学吞咽困难诊断","authors":"M. Ihrke, A. Beck, D. Mürbe, L. J. Voß","doi":"10.1111/jtxs.12833","DOIUrl":null,"url":null,"abstract":"<p>Videofluoroscopic swallowing study (VFSS), alongside flexible endoscopic evaluation of swallowing, represents the gold standard for diagnosing swallowing disorders and to determine severity, pathophysiology, and effective interventions, including texture modification. The clinical swallowing examination and assessment supplements these instrumental methods and serves as the basis for the modules of swallowing diagnostics. The adaptation of food and drink consistencies in dysphagia management has become widespread. For valid results of a VFSS with respect to confirming swallowing safety and efficiency of different liquid and food consistencies and textures, the use of uniform recipes containing radio-opaque contrast media is important. Our goal was to identify recipes that would produce consistencies that conform to the liquid and food levels of 0–7, as defined by the International Dysphagia Diet Standardization Initiative (IDDSI), with barium- and iodine-based contrast media, xanthan gum-based thickeners, and other edible components, which also show sufficient contrast on VFSS. In this study, we determined the different recipes using IDDSI testing methods and explored their radiological characteristics using a Philips MultiDiagnost Eleva fluoroscopy system and two different fluid contrast agents: barium- (Micropaque®) and iodine-based (Telebrix®). All recipes showed sufficient contrast on fluoroscopy and could be visualized in the amounts used for swallowing examinations. They were practical and easy to implement in terms of production and availability of the components. The homogeneity of the recipes diminished with higher IDDSI levels, which represent transitional food, but appeared still sufficient for fluoroscopic examination. The opacity did not significantly differ between the barium- and iodine-based contrast media.</p>","PeriodicalId":17175,"journal":{"name":"Journal of texture studies","volume":"55 2","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jtxs.12833","citationCount":"0","resultStr":"{\"title\":\"IDDSI-compliant recipes containing oral contrast agents for radiological dysphagia diagnostics\",\"authors\":\"M. Ihrke, A. Beck, D. Mürbe, L. J. Voß\",\"doi\":\"10.1111/jtxs.12833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Videofluoroscopic swallowing study (VFSS), alongside flexible endoscopic evaluation of swallowing, represents the gold standard for diagnosing swallowing disorders and to determine severity, pathophysiology, and effective interventions, including texture modification. The clinical swallowing examination and assessment supplements these instrumental methods and serves as the basis for the modules of swallowing diagnostics. The adaptation of food and drink consistencies in dysphagia management has become widespread. For valid results of a VFSS with respect to confirming swallowing safety and efficiency of different liquid and food consistencies and textures, the use of uniform recipes containing radio-opaque contrast media is important. Our goal was to identify recipes that would produce consistencies that conform to the liquid and food levels of 0–7, as defined by the International Dysphagia Diet Standardization Initiative (IDDSI), with barium- and iodine-based contrast media, xanthan gum-based thickeners, and other edible components, which also show sufficient contrast on VFSS. In this study, we determined the different recipes using IDDSI testing methods and explored their radiological characteristics using a Philips MultiDiagnost Eleva fluoroscopy system and two different fluid contrast agents: barium- (Micropaque®) and iodine-based (Telebrix®). All recipes showed sufficient contrast on fluoroscopy and could be visualized in the amounts used for swallowing examinations. They were practical and easy to implement in terms of production and availability of the components. The homogeneity of the recipes diminished with higher IDDSI levels, which represent transitional food, but appeared still sufficient for fluoroscopic examination. The opacity did not significantly differ between the barium- and iodine-based contrast media.</p>\",\"PeriodicalId\":17175,\"journal\":{\"name\":\"Journal of texture studies\",\"volume\":\"55 2\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jtxs.12833\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of texture studies\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jtxs.12833\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of texture studies","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jtxs.12833","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
IDDSI-compliant recipes containing oral contrast agents for radiological dysphagia diagnostics
Videofluoroscopic swallowing study (VFSS), alongside flexible endoscopic evaluation of swallowing, represents the gold standard for diagnosing swallowing disorders and to determine severity, pathophysiology, and effective interventions, including texture modification. The clinical swallowing examination and assessment supplements these instrumental methods and serves as the basis for the modules of swallowing diagnostics. The adaptation of food and drink consistencies in dysphagia management has become widespread. For valid results of a VFSS with respect to confirming swallowing safety and efficiency of different liquid and food consistencies and textures, the use of uniform recipes containing radio-opaque contrast media is important. Our goal was to identify recipes that would produce consistencies that conform to the liquid and food levels of 0–7, as defined by the International Dysphagia Diet Standardization Initiative (IDDSI), with barium- and iodine-based contrast media, xanthan gum-based thickeners, and other edible components, which also show sufficient contrast on VFSS. In this study, we determined the different recipes using IDDSI testing methods and explored their radiological characteristics using a Philips MultiDiagnost Eleva fluoroscopy system and two different fluid contrast agents: barium- (Micropaque®) and iodine-based (Telebrix®). All recipes showed sufficient contrast on fluoroscopy and could be visualized in the amounts used for swallowing examinations. They were practical and easy to implement in terms of production and availability of the components. The homogeneity of the recipes diminished with higher IDDSI levels, which represent transitional food, but appeared still sufficient for fluoroscopic examination. The opacity did not significantly differ between the barium- and iodine-based contrast media.
期刊介绍:
The Journal of Texture Studies is a fully peer-reviewed international journal specialized in the physics, physiology, and psychology of food oral processing, with an emphasis on the food texture and structure, sensory perception and mouth-feel, food oral behaviour, food liking and preference. The journal was first published in 1969 and has been the primary source for disseminating advances in knowledge on all of the sciences that relate to food texture. In recent years, Journal of Texture Studies has expanded its coverage to a much broader range of texture research and continues to publish high quality original and innovative experimental-based (including numerical analysis and simulation) research concerned with all aspects of eating and food preference.
Journal of Texture Studies welcomes research articles, research notes, reviews, discussion papers, and communications from contributors of all relevant disciplines. Some key coverage areas/topics include (but not limited to):
• Physical, mechanical, and micro-structural principles of food texture
• Oral physiology
• Psychology and brain responses of eating and food sensory
• Food texture design and modification for specific consumers
• In vitro and in vivo studies of eating and swallowing
• Novel technologies and methodologies for the assessment of sensory properties
• Simulation and numerical analysis of eating and swallowing