用于奥恩斯坦-乌伦贝克过程参数估计的传统方法与深度学习方法比较

Jacob Fein-Ashley
{"title":"用于奥恩斯坦-乌伦贝克过程参数估计的传统方法与深度学习方法比较","authors":"Jacob Fein-Ashley","doi":"arxiv-2404.11526","DOIUrl":null,"url":null,"abstract":"We consider the Ornstein-Uhlenbeck (OU) process, a stochastic process widely\nused in finance, physics, and biology. Parameter estimation of the OU process\nis a challenging problem. Thus, we review traditional tracking methods and\ncompare them with novel applications of deep learning to estimate the\nparameters of the OU process. We use a multi-layer perceptron to estimate the\nparameters of the OU process and compare its performance with traditional\nparameter estimation methods, such as the Kalman filter and maximum likelihood\nestimation. We find that the multi-layer perceptron can accurately estimate the\nparameters of the OU process given a large dataset of observed trajectories;\nhowever, traditional parameter estimation methods may be more suitable for\nsmaller datasets.","PeriodicalId":501294,"journal":{"name":"arXiv - QuantFin - Computational Finance","volume":"68 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comparison of Traditional and Deep Learning Methods for Parameter Estimation of the Ornstein-Uhlenbeck Process\",\"authors\":\"Jacob Fein-Ashley\",\"doi\":\"arxiv-2404.11526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the Ornstein-Uhlenbeck (OU) process, a stochastic process widely\\nused in finance, physics, and biology. Parameter estimation of the OU process\\nis a challenging problem. Thus, we review traditional tracking methods and\\ncompare them with novel applications of deep learning to estimate the\\nparameters of the OU process. We use a multi-layer perceptron to estimate the\\nparameters of the OU process and compare its performance with traditional\\nparameter estimation methods, such as the Kalman filter and maximum likelihood\\nestimation. We find that the multi-layer perceptron can accurately estimate the\\nparameters of the OU process given a large dataset of observed trajectories;\\nhowever, traditional parameter estimation methods may be more suitable for\\nsmaller datasets.\",\"PeriodicalId\":501294,\"journal\":{\"name\":\"arXiv - QuantFin - Computational Finance\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Computational Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2404.11526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Computational Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.11526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的是奥恩斯坦-乌伦贝克(OU)过程,这是一种广泛应用于金融、物理和生物学的随机过程。OU 过程的参数估计是一个具有挑战性的问题。因此,我们回顾了传统的跟踪方法,并将它们与深度学习在估计 OU 过程参数方面的新应用进行了比较。我们使用多层感知器来估计 OU 过程的参数,并将其性能与卡尔曼滤波和最大似然估计等传统参数估计方法进行比较。我们发现,在观测到大量轨迹数据集的情况下,多层感知器可以准确地估计OU过程的参数;然而,传统的参数估计方法可能更适用于较小的数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Comparison of Traditional and Deep Learning Methods for Parameter Estimation of the Ornstein-Uhlenbeck Process
We consider the Ornstein-Uhlenbeck (OU) process, a stochastic process widely used in finance, physics, and biology. Parameter estimation of the OU process is a challenging problem. Thus, we review traditional tracking methods and compare them with novel applications of deep learning to estimate the parameters of the OU process. We use a multi-layer perceptron to estimate the parameters of the OU process and compare its performance with traditional parameter estimation methods, such as the Kalman filter and maximum likelihood estimation. We find that the multi-layer perceptron can accurately estimate the parameters of the OU process given a large dataset of observed trajectories; however, traditional parameter estimation methods may be more suitable for smaller datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A deep primal-dual BSDE method for optimal stopping problems Robust financial calibration: a Bayesian approach for neural SDEs MANA-Net: Mitigating Aggregated Sentiment Homogenization with News Weighting for Enhanced Market Prediction QuantFactor REINFORCE: Mining Steady Formulaic Alpha Factors with Variance-bounded REINFORCE Signature of maturity in cryptocurrency volatility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1