{"title":"古布瑟-罗恰模型中的掺杂全息超导体","authors":"Ziyi Zhao, Wenhe Cai, Shuta Ishigaki","doi":"10.1088/1572-9494/ad30f5","DOIUrl":null,"url":null,"abstract":"We construct a doped holographic superconductor in the Gubser–Rocha model, and realize a superconducting dome in the middle of the temperature-doping phase diagram. It is worth noting that unlike in previous research, the profile of our dome shrinks inward near to zero temperature. From the numerical observation for the coupling dependence of the phase diagram, we find that the coupling between the two gauge fields plays a crucial role in the formation of the dome. We also analytically calculate the DC conductivity of the normal phase of the system in the momentum dissipation and obtain resistivity which is proportional to the temperature. The AC conductivity is calculated numerically.","PeriodicalId":10641,"journal":{"name":"Communications in Theoretical Physics","volume":"35 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Doped holographic superconductors in the Gubser–Rocha model\",\"authors\":\"Ziyi Zhao, Wenhe Cai, Shuta Ishigaki\",\"doi\":\"10.1088/1572-9494/ad30f5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct a doped holographic superconductor in the Gubser–Rocha model, and realize a superconducting dome in the middle of the temperature-doping phase diagram. It is worth noting that unlike in previous research, the profile of our dome shrinks inward near to zero temperature. From the numerical observation for the coupling dependence of the phase diagram, we find that the coupling between the two gauge fields plays a crucial role in the formation of the dome. We also analytically calculate the DC conductivity of the normal phase of the system in the momentum dissipation and obtain resistivity which is proportional to the temperature. The AC conductivity is calculated numerically.\",\"PeriodicalId\":10641,\"journal\":{\"name\":\"Communications in Theoretical Physics\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Theoretical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1572-9494/ad30f5\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1572-9494/ad30f5","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Doped holographic superconductors in the Gubser–Rocha model
We construct a doped holographic superconductor in the Gubser–Rocha model, and realize a superconducting dome in the middle of the temperature-doping phase diagram. It is worth noting that unlike in previous research, the profile of our dome shrinks inward near to zero temperature. From the numerical observation for the coupling dependence of the phase diagram, we find that the coupling between the two gauge fields plays a crucial role in the formation of the dome. We also analytically calculate the DC conductivity of the normal phase of the system in the momentum dissipation and obtain resistivity which is proportional to the temperature. The AC conductivity is calculated numerically.
期刊介绍:
Communications in Theoretical Physics is devoted to reporting important new developments in the area of theoretical physics. Papers cover the fields of:
mathematical physics
quantum physics and quantum information
particle physics and quantum field theory
nuclear physics
gravitation theory, astrophysics and cosmology
atomic, molecular, optics (AMO) and plasma physics, chemical physics
statistical physics, soft matter and biophysics
condensed matter theory
others
Certain new interdisciplinary subjects are also incorporated.