Longfei Yin, Tiantian Liu, Xinlong Mai, Shilun Sun, Pengqi Yin, Guohua Wu, Bin Luo
{"title":"鬼影成像中的分组正则化方法研究","authors":"Longfei Yin, Tiantian Liu, Xinlong Mai, Shilun Sun, Pengqi Yin, Guohua Wu, Bin Luo","doi":"10.1088/2040-8986/ad3b18","DOIUrl":null,"url":null,"abstract":"Ghost imaging (GI) has found application across diverse fields owing to its distinctive benefits. When employing the rotating ground-glass scheme and utilizing second-order correlation for image reconstruction, the efficiency of imaging is hindered by the multiple sampling of reference patterns. To address this, the orthonormalization method has been employed to enhance image quality and reduce the required number of measurements. Despite its effectiveness, the original orthonormalization method is prone to accumulating imaging noise and errors as the number of measurements increases, leading to a significant degradation in image quality. To overcome this limitation, this paper introduces the grouped orthonormalization method (GO-GI) as an extension of the orthonormalization technique. By adjusting the ‘group size’, this method enables control over the accumulation of errors, resulting in an improvement in image quality. The evaluation of image quality in terms of Contrast-to-Noise demonstrates the significant advantages of the GO-GI method in both simulation and experimental results. This study establishes the GO-GI method as a simple yet practical approach in the realm of GI.","PeriodicalId":16775,"journal":{"name":"Journal of Optics","volume":"18 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on the grouped orthonormalization method in ghost imaging\",\"authors\":\"Longfei Yin, Tiantian Liu, Xinlong Mai, Shilun Sun, Pengqi Yin, Guohua Wu, Bin Luo\",\"doi\":\"10.1088/2040-8986/ad3b18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ghost imaging (GI) has found application across diverse fields owing to its distinctive benefits. When employing the rotating ground-glass scheme and utilizing second-order correlation for image reconstruction, the efficiency of imaging is hindered by the multiple sampling of reference patterns. To address this, the orthonormalization method has been employed to enhance image quality and reduce the required number of measurements. Despite its effectiveness, the original orthonormalization method is prone to accumulating imaging noise and errors as the number of measurements increases, leading to a significant degradation in image quality. To overcome this limitation, this paper introduces the grouped orthonormalization method (GO-GI) as an extension of the orthonormalization technique. By adjusting the ‘group size’, this method enables control over the accumulation of errors, resulting in an improvement in image quality. The evaluation of image quality in terms of Contrast-to-Noise demonstrates the significant advantages of the GO-GI method in both simulation and experimental results. This study establishes the GO-GI method as a simple yet practical approach in the realm of GI.\",\"PeriodicalId\":16775,\"journal\":{\"name\":\"Journal of Optics\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2040-8986/ad3b18\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2040-8986/ad3b18","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
Research on the grouped orthonormalization method in ghost imaging
Ghost imaging (GI) has found application across diverse fields owing to its distinctive benefits. When employing the rotating ground-glass scheme and utilizing second-order correlation for image reconstruction, the efficiency of imaging is hindered by the multiple sampling of reference patterns. To address this, the orthonormalization method has been employed to enhance image quality and reduce the required number of measurements. Despite its effectiveness, the original orthonormalization method is prone to accumulating imaging noise and errors as the number of measurements increases, leading to a significant degradation in image quality. To overcome this limitation, this paper introduces the grouped orthonormalization method (GO-GI) as an extension of the orthonormalization technique. By adjusting the ‘group size’, this method enables control over the accumulation of errors, resulting in an improvement in image quality. The evaluation of image quality in terms of Contrast-to-Noise demonstrates the significant advantages of the GO-GI method in both simulation and experimental results. This study establishes the GO-GI method as a simple yet practical approach in the realm of GI.
期刊介绍:
Journal of Optics publishes new experimental and theoretical research across all areas of pure and applied optics, both modern and classical. Research areas are categorised as:
Nanophotonics and plasmonics
Metamaterials and structured photonic materials
Quantum photonics
Biophotonics
Light-matter interactions
Nonlinear and ultrafast optics
Propagation, diffraction and scattering
Optical communication
Integrated optics
Photovoltaics and energy harvesting
We discourage incremental advances, purely numerical simulations without any validation, or research without a strong optics advance, e.g. computer algorithms applied to optical and imaging processes, equipment designs or material fabrication.