{"title":"游泳对腕足动物发出的水流声的影响","authors":"Ji Zhou, Jung-Hee Seo, Rajat Mittal","doi":"10.1088/1748-3190/ad3a4e","DOIUrl":null,"url":null,"abstract":"Computational models are used to examine the effect of schooling on flow generated noise from fish swimming using their caudal fins. We simulate the flow as well as the far-field hydrodynamic sound generated by the time-varying pressure loading on these carangiform swimmers. The effect of the number of swimmers in the school, the relative phase of fin flapping of the swimmers, and their spatial arrangement is examined. The simulations indicate that the phase of the fin flapping is a dominant factor in the total sound radiated into the far-field by a group of swimmers. For small schools, a suitable choice of relative phase between the swimmers can significantly reduce the overall intensity of the sound radiated to the far-field. The relative positioning of the swimmers is also shown to have an impact on the total radiated noise. For a larger school, even highly uncorrelated phases of fin movement between the swimmers in the school are very effective in significantly reducing the overall intensity of sound radiated into the far-field. The implications of these findings for fish ethology as well as the design and operation of bioinspired vehicles are discussed.","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":"20 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of schooling on flow generated sounds from carangiform swimmers\",\"authors\":\"Ji Zhou, Jung-Hee Seo, Rajat Mittal\",\"doi\":\"10.1088/1748-3190/ad3a4e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computational models are used to examine the effect of schooling on flow generated noise from fish swimming using their caudal fins. We simulate the flow as well as the far-field hydrodynamic sound generated by the time-varying pressure loading on these carangiform swimmers. The effect of the number of swimmers in the school, the relative phase of fin flapping of the swimmers, and their spatial arrangement is examined. The simulations indicate that the phase of the fin flapping is a dominant factor in the total sound radiated into the far-field by a group of swimmers. For small schools, a suitable choice of relative phase between the swimmers can significantly reduce the overall intensity of the sound radiated to the far-field. The relative positioning of the swimmers is also shown to have an impact on the total radiated noise. For a larger school, even highly uncorrelated phases of fin movement between the swimmers in the school are very effective in significantly reducing the overall intensity of sound radiated into the far-field. The implications of these findings for fish ethology as well as the design and operation of bioinspired vehicles are discussed.\",\"PeriodicalId\":55377,\"journal\":{\"name\":\"Bioinspiration & Biomimetics\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinspiration & Biomimetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-3190/ad3a4e\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspiration & Biomimetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1088/1748-3190/ad3a4e","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Effect of schooling on flow generated sounds from carangiform swimmers
Computational models are used to examine the effect of schooling on flow generated noise from fish swimming using their caudal fins. We simulate the flow as well as the far-field hydrodynamic sound generated by the time-varying pressure loading on these carangiform swimmers. The effect of the number of swimmers in the school, the relative phase of fin flapping of the swimmers, and their spatial arrangement is examined. The simulations indicate that the phase of the fin flapping is a dominant factor in the total sound radiated into the far-field by a group of swimmers. For small schools, a suitable choice of relative phase between the swimmers can significantly reduce the overall intensity of the sound radiated to the far-field. The relative positioning of the swimmers is also shown to have an impact on the total radiated noise. For a larger school, even highly uncorrelated phases of fin movement between the swimmers in the school are very effective in significantly reducing the overall intensity of sound radiated into the far-field. The implications of these findings for fish ethology as well as the design and operation of bioinspired vehicles are discussed.
期刊介绍:
Bioinspiration & Biomimetics publishes research involving the study and distillation of principles and functions found in biological systems that have been developed through evolution, and application of this knowledge to produce novel and exciting basic technologies and new approaches to solving scientific problems. It provides a forum for interdisciplinary research which acts as a pipeline, facilitating the two-way flow of ideas and understanding between the extensive bodies of knowledge of the different disciplines. It has two principal aims: to draw on biology to enrich engineering and to draw from engineering to enrich biology.
The journal aims to include input from across all intersecting areas of both fields. In biology, this would include work in all fields from physiology to ecology, with either zoological or botanical focus. In engineering, this would include both design and practical application of biomimetic or bioinspired devices and systems. Typical areas of interest include:
Systems, designs and structure
Communication and navigation
Cooperative behaviour
Self-organizing biological systems
Self-healing and self-assembly
Aerial locomotion and aerospace applications of biomimetics
Biomorphic surface and subsurface systems
Marine dynamics: swimming and underwater dynamics
Applications of novel materials
Biomechanics; including movement, locomotion, fluidics
Cellular behaviour
Sensors and senses
Biomimetic or bioinformed approaches to geological exploration.