利用动态流体调度和通道存储对连续流微流控生物芯片进行容量感知清洗优化

IF 2.2 4区 计算机科学 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE ACM Transactions on Design Automation of Electronic Systems Pub Date : 2024-04-17 DOI:10.1145/3659952
Zhisheng Chen, Xu Hu, Wenzhong Guo, Genggeng Liu, Jiaxuan Wang, Tsung-Yi Ho, Xing Huang
{"title":"利用动态流体调度和通道存储对连续流微流控生物芯片进行容量感知清洗优化","authors":"Zhisheng Chen, Xu Hu, Wenzhong Guo, Genggeng Liu, Jiaxuan Wang, Tsung-Yi Ho, Xing Huang","doi":"10.1145/3659952","DOIUrl":null,"url":null,"abstract":"<p>Continuous-flow microfluidic biochips are gaining increasing attention with promising applications for automatically executing various laboratory procedures in biology and biochemistry. Biochips with distributed channel-storage architectures enable each channel to switch between the roles of transportation and storage. Consequently, fluid transportation, caching, and fetch can occur concurrently through different flow paths. When two dissimilar types of fluidic flows occur through the same channels in a time-interleaved manner, it may cause contamination to the latter as some residues of the former flow may be stuck at the channel wall during transportation. To remove the residues, wash operations are introduced as an essential step to avoid incorrect assay outcomes. However, existing work has been considered that the washing capacity of a buffer fluid is unlimited. In the actual scenario, a fixed-volume buffer fluid irrefutably possesses a limited washing capacity, which can be successively consumed while washing away residues from the channels. Hence, capacity-aware wash scheme is a basic requirement to fulfil the dynamic fluid scheduling and channel storage. In this paper, we formulate a practical wash optimization problem for microfluidic biochips, which considers the requirements of dynamic fluid scheduling, channel storage, as well as washing capacity constraints of buffer fluids simultaneously, and present an efficient design flow to solve this problem systematically. Given the high-level synthesis result of a biochemical application and the corresponding component placement solution, our goal is to complete a contamination-aware flow-path planning with short flow-channel length. Meanwhile, the biochemical application can be executed efficiently and correctly with an optimized capacity-aware wash scheme. Experimental results show that compared to a state-of-the-art washing method, the proposed method achieves an average reduction of 26.1%, 43.1%, and 34.1% across all the benchmarks with respect to the total channel length, total wash time, and execution time of bioassays, respectively.</p>","PeriodicalId":50944,"journal":{"name":"ACM Transactions on Design Automation of Electronic Systems","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Capacity-Aware Wash Optimization with Dynamic Fluid Scheduling and Channel Storage for Continuous-Flow Microfluidic Biochips\",\"authors\":\"Zhisheng Chen, Xu Hu, Wenzhong Guo, Genggeng Liu, Jiaxuan Wang, Tsung-Yi Ho, Xing Huang\",\"doi\":\"10.1145/3659952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Continuous-flow microfluidic biochips are gaining increasing attention with promising applications for automatically executing various laboratory procedures in biology and biochemistry. Biochips with distributed channel-storage architectures enable each channel to switch between the roles of transportation and storage. Consequently, fluid transportation, caching, and fetch can occur concurrently through different flow paths. When two dissimilar types of fluidic flows occur through the same channels in a time-interleaved manner, it may cause contamination to the latter as some residues of the former flow may be stuck at the channel wall during transportation. To remove the residues, wash operations are introduced as an essential step to avoid incorrect assay outcomes. However, existing work has been considered that the washing capacity of a buffer fluid is unlimited. In the actual scenario, a fixed-volume buffer fluid irrefutably possesses a limited washing capacity, which can be successively consumed while washing away residues from the channels. Hence, capacity-aware wash scheme is a basic requirement to fulfil the dynamic fluid scheduling and channel storage. In this paper, we formulate a practical wash optimization problem for microfluidic biochips, which considers the requirements of dynamic fluid scheduling, channel storage, as well as washing capacity constraints of buffer fluids simultaneously, and present an efficient design flow to solve this problem systematically. Given the high-level synthesis result of a biochemical application and the corresponding component placement solution, our goal is to complete a contamination-aware flow-path planning with short flow-channel length. Meanwhile, the biochemical application can be executed efficiently and correctly with an optimized capacity-aware wash scheme. Experimental results show that compared to a state-of-the-art washing method, the proposed method achieves an average reduction of 26.1%, 43.1%, and 34.1% across all the benchmarks with respect to the total channel length, total wash time, and execution time of bioassays, respectively.</p>\",\"PeriodicalId\":50944,\"journal\":{\"name\":\"ACM Transactions on Design Automation of Electronic Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Design Automation of Electronic Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3659952\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Design Automation of Electronic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3659952","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

连续流微流体生物芯片在生物和生物化学领域自动执行各种实验室程序的应用前景广阔,正日益受到关注。采用分布式通道-存储架构的生物芯片使每个通道都能在传输和存储之间切换。因此,流体输送、缓存和提取可通过不同的流动路径同时进行。当两种不同类型的流体以时间交错的方式通过同一通道时,可能会对后一种流体造成污染,因为前一种流体的一些残留物可能会在运输过程中滞留在通道壁上。为了清除这些残留物,清洗操作是避免错误检测结果的必要步骤。然而,现有工作认为缓冲液的洗涤能力是无限的。在实际情况中,固定容量的缓冲液无可辩驳地拥有有限的洗涤容量,在洗涤通道中的残留物时,洗涤容量会被陆续消耗掉。因此,容量感知洗涤方案是实现动态流体调度和通道存储的基本要求。本文提出了一个实用的微流控生物芯片清洗优化问题,该问题同时考虑了动态流体调度、通道存储以及缓冲液清洗容量约束等要求,并给出了系统解决该问题的高效设计流程。鉴于生化应用的高层次综合结果和相应的元件布局方案,我们的目标是完成污染感知的流道规划,并缩短流道长度。同时,通过优化的容量感知清洗方案,生化应用可以高效、正确地执行。实验结果表明,与最先进的清洗方法相比,在所有基准测试中,所提出的方法在通道总长度、总清洗时间和生物测定执行时间方面分别平均减少了 26.1%、43.1% 和 34.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Capacity-Aware Wash Optimization with Dynamic Fluid Scheduling and Channel Storage for Continuous-Flow Microfluidic Biochips

Continuous-flow microfluidic biochips are gaining increasing attention with promising applications for automatically executing various laboratory procedures in biology and biochemistry. Biochips with distributed channel-storage architectures enable each channel to switch between the roles of transportation and storage. Consequently, fluid transportation, caching, and fetch can occur concurrently through different flow paths. When two dissimilar types of fluidic flows occur through the same channels in a time-interleaved manner, it may cause contamination to the latter as some residues of the former flow may be stuck at the channel wall during transportation. To remove the residues, wash operations are introduced as an essential step to avoid incorrect assay outcomes. However, existing work has been considered that the washing capacity of a buffer fluid is unlimited. In the actual scenario, a fixed-volume buffer fluid irrefutably possesses a limited washing capacity, which can be successively consumed while washing away residues from the channels. Hence, capacity-aware wash scheme is a basic requirement to fulfil the dynamic fluid scheduling and channel storage. In this paper, we formulate a practical wash optimization problem for microfluidic biochips, which considers the requirements of dynamic fluid scheduling, channel storage, as well as washing capacity constraints of buffer fluids simultaneously, and present an efficient design flow to solve this problem systematically. Given the high-level synthesis result of a biochemical application and the corresponding component placement solution, our goal is to complete a contamination-aware flow-path planning with short flow-channel length. Meanwhile, the biochemical application can be executed efficiently and correctly with an optimized capacity-aware wash scheme. Experimental results show that compared to a state-of-the-art washing method, the proposed method achieves an average reduction of 26.1%, 43.1%, and 34.1% across all the benchmarks with respect to the total channel length, total wash time, and execution time of bioassays, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Design Automation of Electronic Systems
ACM Transactions on Design Automation of Electronic Systems 工程技术-计算机:软件工程
CiteScore
3.20
自引率
7.10%
发文量
105
审稿时长
3 months
期刊介绍: TODAES is a premier ACM journal in design and automation of electronic systems. It publishes innovative work documenting significant research and development advances on the specification, design, analysis, simulation, testing, and evaluation of electronic systems, emphasizing a computer science/engineering orientation. Both theoretical analysis and practical solutions are welcome.
期刊最新文献
Efficient Attacks on Strong PUFs via Covariance and Boolean Modeling PriorMSM: An Efficient Acceleration Architecture for Multi-Scalar Multiplication Multi-Stream Scheduling of Inference Pipelines on Edge Devices - a DRL Approach A Power Optimization Approach for Large-scale RM-TB Dual Logic Circuits Based on an Adaptive Multi-Task Intelligent Algorithm MAB-BMC: A Formal Verification Enhancer by Harnessing Multiple BMC Engines Together
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1