在广阔的化学空间中发现金属复合物

IF 12 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Nature computational science Pub Date : 2024-04-18 DOI:10.1038/s43588-024-00618-3
{"title":"在广阔的化学空间中发现金属复合物","authors":"","doi":"10.1038/s43588-024-00618-3","DOIUrl":null,"url":null,"abstract":"Approaches are needed to accelerate the discovery of transition metal complexes (TMCs), which is challenging owing to their vast chemical space. A large dataset of diverse ligands is now introduced and leveraged in a multiobjective genetic algorithm that enables the efficient optimization of TMCs in chemical spaces containing billions of them.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":null,"pages":null},"PeriodicalIF":12.0000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovering metal complexes in vast chemical spaces\",\"authors\":\"\",\"doi\":\"10.1038/s43588-024-00618-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Approaches are needed to accelerate the discovery of transition metal complexes (TMCs), which is challenging owing to their vast chemical space. A large dataset of diverse ligands is now introduced and leveraged in a multiobjective genetic algorithm that enables the efficient optimization of TMCs in chemical spaces containing billions of them.\",\"PeriodicalId\":74246,\"journal\":{\"name\":\"Nature computational science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.0000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature computational science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43588-024-00618-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-024-00618-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

由于过渡金属配合物(TMCs)的化学空间巨大,因此需要加快发现这种配合物的方法。现在,我们引入了大量不同配体的数据集,并在多目标遗传算法中加以利用,从而在包含数十亿配体的化学空间中高效优化过渡金属复合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discovering metal complexes in vast chemical spaces
Approaches are needed to accelerate the discovery of transition metal complexes (TMCs), which is challenging owing to their vast chemical space. A large dataset of diverse ligands is now introduced and leveraged in a multiobjective genetic algorithm that enables the efficient optimization of TMCs in chemical spaces containing billions of them.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
期刊最新文献
Real-time non-line-of-sight computational imaging using spectrum filtering and motion compensation. Deep generative design of RNA aptamers using structural predictions. Extracting reliable quantum outputs for noisy devices. Provable bounds for noise-free expectation values computed from noisy samples. E-waste challenges of generative artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1