{"title":"在广阔的化学空间中发现金属复合物","authors":"","doi":"10.1038/s43588-024-00618-3","DOIUrl":null,"url":null,"abstract":"Approaches are needed to accelerate the discovery of transition metal complexes (TMCs), which is challenging owing to their vast chemical space. A large dataset of diverse ligands is now introduced and leveraged in a multiobjective genetic algorithm that enables the efficient optimization of TMCs in chemical spaces containing billions of them.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":null,"pages":null},"PeriodicalIF":12.0000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovering metal complexes in vast chemical spaces\",\"authors\":\"\",\"doi\":\"10.1038/s43588-024-00618-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Approaches are needed to accelerate the discovery of transition metal complexes (TMCs), which is challenging owing to their vast chemical space. A large dataset of diverse ligands is now introduced and leveraged in a multiobjective genetic algorithm that enables the efficient optimization of TMCs in chemical spaces containing billions of them.\",\"PeriodicalId\":74246,\"journal\":{\"name\":\"Nature computational science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.0000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature computational science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43588-024-00618-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-024-00618-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Discovering metal complexes in vast chemical spaces
Approaches are needed to accelerate the discovery of transition metal complexes (TMCs), which is challenging owing to their vast chemical space. A large dataset of diverse ligands is now introduced and leveraged in a multiobjective genetic algorithm that enables the efficient optimization of TMCs in chemical spaces containing billions of them.