Muhammad Solehin Abd Ghani, Nur Ain Latifhaa Abu Bakar, Arba Pramundita Ramadani, Arde Toga Nugraha, Khalijah Awang, Mohammad Tasyriq Che Omar, Unang Supratman, Ezatul Ezleen Kamarulzaman, Mohamad Nurul Azmi Mohamad Taib
{"title":"福寿果五环三萜类化合物的半合成及体外和硅学抗疟疾评价","authors":"Muhammad Solehin Abd Ghani, Nur Ain Latifhaa Abu Bakar, Arba Pramundita Ramadani, Arde Toga Nugraha, Khalijah Awang, Mohammad Tasyriq Che Omar, Unang Supratman, Ezatul Ezleen Kamarulzaman, Mohamad Nurul Azmi Mohamad Taib","doi":"10.2174/0113852728294047240315063815","DOIUrl":null,"url":null,"abstract":": A total of twelve pentacyclic triterpenoid derivatives based on betulin (1) and lupeol (2) scaffolds isolated from Diospyros foxworthyi were hemisynthesized by acylation or acetylation reactions with appropriate acid chloride or acetic anhydride. The structures of the hemisynthesised compounds were characterised by means of FT-IR, 1D- and 2D-NMR, as well as HRMS analysis. These compounds were assayed for in vitro anti-malarial studies by inhibition of β-hematin formation assay with chloroquine as a positive control. Compounds 1d and 2f showed the strongest potential as β-hematin formation inhibitors with IC50 values of 6.66 ± 1.36 and 11.89 ± 0.15 µM, respectively, compared with the positive control (chloroquine; IC50 = 37.50 ± 0.60 µM). In silico molecular docking simulations were performed using AutoDock Vina for compounds 1d and 2f to investigate the binding interactions and free energy of binding (FEB) with the hemozoin supercell crystal structure (CCDC number: XETXUP01). The findings revealed several hydrophobic interaction modes between the 1d, 2f and hemozoin, with calculated FEBs of -8.4 ± 0.2 and -8.9 ± 0.0 kcal mol-1 , indicating strong and favourable interactions.","PeriodicalId":10926,"journal":{"name":"Current Organic Chemistry","volume":"50 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hemisynthesis of Pentacyclic Triterpenoids from Diospyros foxworthyi with in vitro and in silico Anti-malarial Evaluation\",\"authors\":\"Muhammad Solehin Abd Ghani, Nur Ain Latifhaa Abu Bakar, Arba Pramundita Ramadani, Arde Toga Nugraha, Khalijah Awang, Mohammad Tasyriq Che Omar, Unang Supratman, Ezatul Ezleen Kamarulzaman, Mohamad Nurul Azmi Mohamad Taib\",\"doi\":\"10.2174/0113852728294047240315063815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": A total of twelve pentacyclic triterpenoid derivatives based on betulin (1) and lupeol (2) scaffolds isolated from Diospyros foxworthyi were hemisynthesized by acylation or acetylation reactions with appropriate acid chloride or acetic anhydride. The structures of the hemisynthesised compounds were characterised by means of FT-IR, 1D- and 2D-NMR, as well as HRMS analysis. These compounds were assayed for in vitro anti-malarial studies by inhibition of β-hematin formation assay with chloroquine as a positive control. Compounds 1d and 2f showed the strongest potential as β-hematin formation inhibitors with IC50 values of 6.66 ± 1.36 and 11.89 ± 0.15 µM, respectively, compared with the positive control (chloroquine; IC50 = 37.50 ± 0.60 µM). In silico molecular docking simulations were performed using AutoDock Vina for compounds 1d and 2f to investigate the binding interactions and free energy of binding (FEB) with the hemozoin supercell crystal structure (CCDC number: XETXUP01). The findings revealed several hydrophobic interaction modes between the 1d, 2f and hemozoin, with calculated FEBs of -8.4 ± 0.2 and -8.9 ± 0.0 kcal mol-1 , indicating strong and favourable interactions.\",\"PeriodicalId\":10926,\"journal\":{\"name\":\"Current Organic Chemistry\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Organic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.2174/0113852728294047240315063815\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/0113852728294047240315063815","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Hemisynthesis of Pentacyclic Triterpenoids from Diospyros foxworthyi with in vitro and in silico Anti-malarial Evaluation
: A total of twelve pentacyclic triterpenoid derivatives based on betulin (1) and lupeol (2) scaffolds isolated from Diospyros foxworthyi were hemisynthesized by acylation or acetylation reactions with appropriate acid chloride or acetic anhydride. The structures of the hemisynthesised compounds were characterised by means of FT-IR, 1D- and 2D-NMR, as well as HRMS analysis. These compounds were assayed for in vitro anti-malarial studies by inhibition of β-hematin formation assay with chloroquine as a positive control. Compounds 1d and 2f showed the strongest potential as β-hematin formation inhibitors with IC50 values of 6.66 ± 1.36 and 11.89 ± 0.15 µM, respectively, compared with the positive control (chloroquine; IC50 = 37.50 ± 0.60 µM). In silico molecular docking simulations were performed using AutoDock Vina for compounds 1d and 2f to investigate the binding interactions and free energy of binding (FEB) with the hemozoin supercell crystal structure (CCDC number: XETXUP01). The findings revealed several hydrophobic interaction modes between the 1d, 2f and hemozoin, with calculated FEBs of -8.4 ± 0.2 and -8.9 ± 0.0 kcal mol-1 , indicating strong and favourable interactions.
期刊介绍:
Current Organic Chemistry aims to provide in-depth/mini reviews on the current progress in various fields related to organic chemistry including bioorganic chemistry, organo-metallic chemistry, asymmetric synthesis, heterocyclic chemistry, natural product chemistry, catalytic and green chemistry, suitable aspects of medicinal chemistry and polymer chemistry, as well as analytical methods in organic chemistry. The frontier reviews provide the current state of knowledge in these fields and are written by chosen experts who are internationally known for their eminent research contributions. The Journal also accepts high quality research papers focusing on hot topics, highlights and letters besides thematic issues in these fields. Current Organic Chemistry should prove to be of great interest to organic chemists in academia and industry, who wish to keep abreast with recent developments in key fields of organic chemistry.