{"title":"不对称纳扎罗夫反应的最新进展","authors":"Hélène Pellissier","doi":"10.2174/0113852728296619240321060646","DOIUrl":null,"url":null,"abstract":":: The Nazarov reaction involves the cyclization of divinyl ketones into cyclopentenones under the influence of strong acids. The prevalence of five-membered carbocycles in a multitude of natural and bioactive products has triggered an intense development of efficient methods for their construction. In particular, asymmetric versions of the Nazarov reaction are achieved by using either a chiral auxiliary or a chiral catalyst, which can be an organocatalyst, a metal catalyst, or a multicatalytic system. This review aims to update the field of asymmetric Nazarov reactions published in 2017. It is divided into four sections, dealing successively with Nazarov reactions of chiral auxiliaries, organocatalytic enantioselective Nazarov reactions, metal/boron-catalyzed enantioselective Nazarov reactions, and multicatalytic enantioselective Nazarov reactions. Each section of the review is subdivided into simple asymmetric Nazarov reactions and Nazarovbased domino/tandem reactions, which have allowed numerous more complex functionalized chiral molecules to be synthesized in one-pot procedures.","PeriodicalId":10926,"journal":{"name":"Current Organic Chemistry","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent Developments in Asymmetric Nazarov Reactions\",\"authors\":\"Hélène Pellissier\",\"doi\":\"10.2174/0113852728296619240321060646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\":: The Nazarov reaction involves the cyclization of divinyl ketones into cyclopentenones under the influence of strong acids. The prevalence of five-membered carbocycles in a multitude of natural and bioactive products has triggered an intense development of efficient methods for their construction. In particular, asymmetric versions of the Nazarov reaction are achieved by using either a chiral auxiliary or a chiral catalyst, which can be an organocatalyst, a metal catalyst, or a multicatalytic system. This review aims to update the field of asymmetric Nazarov reactions published in 2017. It is divided into four sections, dealing successively with Nazarov reactions of chiral auxiliaries, organocatalytic enantioselective Nazarov reactions, metal/boron-catalyzed enantioselective Nazarov reactions, and multicatalytic enantioselective Nazarov reactions. Each section of the review is subdivided into simple asymmetric Nazarov reactions and Nazarovbased domino/tandem reactions, which have allowed numerous more complex functionalized chiral molecules to be synthesized in one-pot procedures.\",\"PeriodicalId\":10926,\"journal\":{\"name\":\"Current Organic Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Organic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.2174/0113852728296619240321060646\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/0113852728296619240321060646","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Recent Developments in Asymmetric Nazarov Reactions
:: The Nazarov reaction involves the cyclization of divinyl ketones into cyclopentenones under the influence of strong acids. The prevalence of five-membered carbocycles in a multitude of natural and bioactive products has triggered an intense development of efficient methods for their construction. In particular, asymmetric versions of the Nazarov reaction are achieved by using either a chiral auxiliary or a chiral catalyst, which can be an organocatalyst, a metal catalyst, or a multicatalytic system. This review aims to update the field of asymmetric Nazarov reactions published in 2017. It is divided into four sections, dealing successively with Nazarov reactions of chiral auxiliaries, organocatalytic enantioselective Nazarov reactions, metal/boron-catalyzed enantioselective Nazarov reactions, and multicatalytic enantioselective Nazarov reactions. Each section of the review is subdivided into simple asymmetric Nazarov reactions and Nazarovbased domino/tandem reactions, which have allowed numerous more complex functionalized chiral molecules to be synthesized in one-pot procedures.
期刊介绍:
Current Organic Chemistry aims to provide in-depth/mini reviews on the current progress in various fields related to organic chemistry including bioorganic chemistry, organo-metallic chemistry, asymmetric synthesis, heterocyclic chemistry, natural product chemistry, catalytic and green chemistry, suitable aspects of medicinal chemistry and polymer chemistry, as well as analytical methods in organic chemistry. The frontier reviews provide the current state of knowledge in these fields and are written by chosen experts who are internationally known for their eminent research contributions. The Journal also accepts high quality research papers focusing on hot topics, highlights and letters besides thematic issues in these fields. Current Organic Chemistry should prove to be of great interest to organic chemists in academia and industry, who wish to keep abreast with recent developments in key fields of organic chemistry.