Lucas J. dos Santos, Elvis do A. Soares, Amaro G. Barreto Jr., Frederico W. Tavares
{"title":"用于无定形碳纳米多孔材料流体结构分析的 3D-cDFT 与 GCMC 仿真的比较","authors":"Lucas J. dos Santos, Elvis do A. Soares, Amaro G. Barreto Jr., Frederico W. Tavares","doi":"10.1007/s10450-024-00444-z","DOIUrl":null,"url":null,"abstract":"<div><p>Investigating fluid behavior in nanoporous materials is essential for gas storage, separation, and catalysis applications. Here, we present a comparison of two computational methods for fluid–structure analysis in amorphous nanoporous carbon materials: three-dimensional (3D) classical density functional theory (cDFT) and grand canonical Monte Carlo (GCMC) simulations. We extended our recent development of 3D-cDFT to allow density-profile analysis without symmetry assumptions, enhancing its applicability to a broader range of porous materials. We provide a theoretical overview and discuss the advantages and limitations of each method. Our results highlight the accuracy of both 3D-cDFT and GCMC simulations while emphasizing differences in computational cost, precision, and scope. We also explore the impact of the non-crystalline structure of amorphous carbon nanopores on fluid structure and adsorption isotherms, as well as fluid–fluid and fluid–solid interactions. We offer insights for selecting computational methods in fluid structure analysis of nanoporous materials, guiding future research and optimization in advanced material development for diverse applications.</p></div>","PeriodicalId":458,"journal":{"name":"Adsorption","volume":"30 5","pages":"583 - 594"},"PeriodicalIF":3.0000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of 3D-cDFT and GCMC simulations for fluid–structure analysis in amorphous carbon nanoporous materials\",\"authors\":\"Lucas J. dos Santos, Elvis do A. Soares, Amaro G. Barreto Jr., Frederico W. Tavares\",\"doi\":\"10.1007/s10450-024-00444-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Investigating fluid behavior in nanoporous materials is essential for gas storage, separation, and catalysis applications. Here, we present a comparison of two computational methods for fluid–structure analysis in amorphous nanoporous carbon materials: three-dimensional (3D) classical density functional theory (cDFT) and grand canonical Monte Carlo (GCMC) simulations. We extended our recent development of 3D-cDFT to allow density-profile analysis without symmetry assumptions, enhancing its applicability to a broader range of porous materials. We provide a theoretical overview and discuss the advantages and limitations of each method. Our results highlight the accuracy of both 3D-cDFT and GCMC simulations while emphasizing differences in computational cost, precision, and scope. We also explore the impact of the non-crystalline structure of amorphous carbon nanopores on fluid structure and adsorption isotherms, as well as fluid–fluid and fluid–solid interactions. We offer insights for selecting computational methods in fluid structure analysis of nanoporous materials, guiding future research and optimization in advanced material development for diverse applications.</p></div>\",\"PeriodicalId\":458,\"journal\":{\"name\":\"Adsorption\",\"volume\":\"30 5\",\"pages\":\"583 - 594\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adsorption\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10450-024-00444-z\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adsorption","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10450-024-00444-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Comparison of 3D-cDFT and GCMC simulations for fluid–structure analysis in amorphous carbon nanoporous materials
Investigating fluid behavior in nanoporous materials is essential for gas storage, separation, and catalysis applications. Here, we present a comparison of two computational methods for fluid–structure analysis in amorphous nanoporous carbon materials: three-dimensional (3D) classical density functional theory (cDFT) and grand canonical Monte Carlo (GCMC) simulations. We extended our recent development of 3D-cDFT to allow density-profile analysis without symmetry assumptions, enhancing its applicability to a broader range of porous materials. We provide a theoretical overview and discuss the advantages and limitations of each method. Our results highlight the accuracy of both 3D-cDFT and GCMC simulations while emphasizing differences in computational cost, precision, and scope. We also explore the impact of the non-crystalline structure of amorphous carbon nanopores on fluid structure and adsorption isotherms, as well as fluid–fluid and fluid–solid interactions. We offer insights for selecting computational methods in fluid structure analysis of nanoporous materials, guiding future research and optimization in advanced material development for diverse applications.
期刊介绍:
The journal Adsorption provides authoritative information on adsorption and allied fields to scientists, engineers, and technologists throughout the world. The information takes the form of peer-reviewed articles, R&D notes, topical review papers, tutorial papers, book reviews, meeting announcements, and news.
Coverage includes fundamental and practical aspects of adsorption: mathematics, thermodynamics, chemistry, and physics, as well as processes, applications, models engineering, and equipment design.
Among the topics are Adsorbents: new materials, new synthesis techniques, characterization of structure and properties, and applications; Equilibria: novel theories or semi-empirical models, experimental data, and new measurement methods; Kinetics: new models, experimental data, and measurement methods. Processes: chemical, biochemical, environmental, and other applications, purification or bulk separation, fixed bed or moving bed systems, simulations, experiments, and design procedures.