众包挖掘新的真菌资源,满足对新型抗生素的需求,对抗耐多药病原体

IF 2.1 4区 医学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of Antibiotics Pub Date : 2024-04-17 DOI:10.1038/s41429-024-00723-5
T. S. Suryanarayanan
{"title":"众包挖掘新的真菌资源,满足对新型抗生素的需求,对抗耐多药病原体","authors":"T. S. Suryanarayanan","doi":"10.1038/s41429-024-00723-5","DOIUrl":null,"url":null,"abstract":"There are a limited number of new antibiotics to manage the health crisis caused by the evolution and spread of antimicrobial resistant (AMR) bacteria including multidrug resistant (MDR), extensively drug-resistant (XDR) and pan-drug-resistant (PDR) ones. Bioprospecting fungi of less studied and extreme environments using new and less used older approaches could reveal novel antibiotics to manage MDR pathogens. Furthermore, I posit a crowdsourcing model which could substantially increase the chances of discovering novel antibiotics as well as new chemotypes for other therapeutic areas and considerably reduce the cost and time of this exercise.","PeriodicalId":54884,"journal":{"name":"Journal of Antibiotics","volume":"77 6","pages":"335-337"},"PeriodicalIF":2.1000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41429-024-00723-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Crowdsourcing for mining new fungal sources for addressing the need for novel antibiotics against multidrug resistant pathogens\",\"authors\":\"T. S. Suryanarayanan\",\"doi\":\"10.1038/s41429-024-00723-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are a limited number of new antibiotics to manage the health crisis caused by the evolution and spread of antimicrobial resistant (AMR) bacteria including multidrug resistant (MDR), extensively drug-resistant (XDR) and pan-drug-resistant (PDR) ones. Bioprospecting fungi of less studied and extreme environments using new and less used older approaches could reveal novel antibiotics to manage MDR pathogens. Furthermore, I posit a crowdsourcing model which could substantially increase the chances of discovering novel antibiotics as well as new chemotypes for other therapeutic areas and considerably reduce the cost and time of this exercise.\",\"PeriodicalId\":54884,\"journal\":{\"name\":\"Journal of Antibiotics\",\"volume\":\"77 6\",\"pages\":\"335-337\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41429-024-00723-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Antibiotics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41429-024-00723-5\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Antibiotics","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41429-024-00723-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

抗菌药耐药性(AMR)细菌(包括多重耐药菌(MDR)、广泛耐药菌(XDR)和泛耐药菌(PDR))的进化和传播导致了健康危机,而目前能够应对这一危机的新型抗生素数量有限。利用新方法和较少使用的旧方法,对研究较少的极端环境中的真菌进行生物勘探,可以发现新型抗生素,从而控制 MDR 病原体。此外,我还提出了一种众包模式,这种模式可以大大增加发现新型抗生素以及其他治疗领域新化学型的机会,并大大降低这项工作的成本和时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Crowdsourcing for mining new fungal sources for addressing the need for novel antibiotics against multidrug resistant pathogens
There are a limited number of new antibiotics to manage the health crisis caused by the evolution and spread of antimicrobial resistant (AMR) bacteria including multidrug resistant (MDR), extensively drug-resistant (XDR) and pan-drug-resistant (PDR) ones. Bioprospecting fungi of less studied and extreme environments using new and less used older approaches could reveal novel antibiotics to manage MDR pathogens. Furthermore, I posit a crowdsourcing model which could substantially increase the chances of discovering novel antibiotics as well as new chemotypes for other therapeutic areas and considerably reduce the cost and time of this exercise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Antibiotics
Journal of Antibiotics 医学-免疫学
CiteScore
6.60
自引率
3.00%
发文量
87
审稿时长
1 months
期刊介绍: The Journal of Antibiotics seeks to promote research on antibiotics and related types of biologically active substances and publishes Articles, Review Articles, Brief Communication, Correspondence and other specially commissioned reports. The Journal of Antibiotics accepts papers on biochemical, chemical, microbiological and pharmacological studies. However, studies regarding human therapy do not fall under the journal’s scope. Contributions regarding recently discovered antibiotics and biologically active microbial products are particularly encouraged. Topics of particular interest within the journal''s scope include, but are not limited to, those listed below: Discovery of new antibiotics and related types of biologically active substances Production, isolation, characterization, structural elucidation, chemical synthesis and derivatization, biological activities, mechanisms of action, and structure-activity relationships of antibiotics and related types of biologically active substances Biosynthesis, bioconversion, taxonomy and genetic studies on producing microorganisms, as well as improvement of production of antibiotics and related types of biologically active substances Novel physical, chemical, biochemical, microbiological or pharmacological methods for detection, assay, determination, structural elucidation and evaluation of antibiotics and related types of biologically active substances Newly found properties, mechanisms of action and resistance-development of antibiotics and related types of biologically active substances.
期刊最新文献
Acknowledgments Identification of nanaomycin A and its analogs by a newly established screening method for functional inhibitors of the type IX secretion system in Porphyromonas gingivalis. Celludinone C, a new dihydroisobenzofuran isolated from Talaromyces cellulolyticus BF-0307. Discovery of new AMR drugs targeting modulators of antimicrobial activity using in vivo silkworm screening systems. Structure-activity relationship studies of ME1111, a novel antifungal agent for topical treatment of onychomycosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1