{"title":"锌指蛋白 Moc3 发挥转录激活剂的功能,促进裂殖酵母中 RNAi- 依赖性组成型异染色质的建立","authors":"Miyuki Mori, Michiaki Sato, Shinya Takahata, Takuya Kajitani, Yota Murakami","doi":"10.1111/gtc.13116","DOIUrl":null,"url":null,"abstract":"<p>In fission yeast, <i>Schizosaccharomyces pombe,</i> constitutive heterochromatin defined by methylation of histone H3 lysine 9 (H3K9me) and its binding protein Swi6/HP1 localizes at the telomere, centromere, and mating-type loci. These loci contain DNA sequences called <i>dg</i> and <i>dh</i>, and the RNA interference (RNAi)-dependent system establishes and maintains heterochromatin at <i>dg/dh</i>. Bi-directional transcription at <i>dg/dh</i> induced by RNA polymerase II is critical in RNAi-dependent heterochromatin formation because the transcribed RNAs provide substrates for siRNA synthesis and a platform for assembling RNAi factors. However, a regulator of <i>dg/dh</i> transcription during the establishment of heterochromatin is not known. Here, we found that a zinc-finger protein Moc3 localizes <i>dh</i> and activates <i>dh</i>-forward transcription in its zinc-finger-dependent manner when heterochromatin structure or heterochromatin-dependent silencing is compromised. However, Moc3 does not localize at normal heterochromatin and does not activate the <i>dh</i>-forward transcription. Notably, the loss of Moc3 caused a retarded heterochromatin establishment, showing that Moc3-dependent <i>dh</i>-forward transcription is critical for RNAi-dependent heterochromatin establishment. Therefore, Moc3 is a transcriptional activator that induces RNAi to establish heterochromatin.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A zinc-finger protein Moc3 functions as a transcription activator to promote RNAi-dependent constitutive heterochromatin establishment in fission yeast\",\"authors\":\"Miyuki Mori, Michiaki Sato, Shinya Takahata, Takuya Kajitani, Yota Murakami\",\"doi\":\"10.1111/gtc.13116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In fission yeast, <i>Schizosaccharomyces pombe,</i> constitutive heterochromatin defined by methylation of histone H3 lysine 9 (H3K9me) and its binding protein Swi6/HP1 localizes at the telomere, centromere, and mating-type loci. These loci contain DNA sequences called <i>dg</i> and <i>dh</i>, and the RNA interference (RNAi)-dependent system establishes and maintains heterochromatin at <i>dg/dh</i>. Bi-directional transcription at <i>dg/dh</i> induced by RNA polymerase II is critical in RNAi-dependent heterochromatin formation because the transcribed RNAs provide substrates for siRNA synthesis and a platform for assembling RNAi factors. However, a regulator of <i>dg/dh</i> transcription during the establishment of heterochromatin is not known. Here, we found that a zinc-finger protein Moc3 localizes <i>dh</i> and activates <i>dh</i>-forward transcription in its zinc-finger-dependent manner when heterochromatin structure or heterochromatin-dependent silencing is compromised. However, Moc3 does not localize at normal heterochromatin and does not activate the <i>dh</i>-forward transcription. Notably, the loss of Moc3 caused a retarded heterochromatin establishment, showing that Moc3-dependent <i>dh</i>-forward transcription is critical for RNAi-dependent heterochromatin establishment. Therefore, Moc3 is a transcriptional activator that induces RNAi to establish heterochromatin.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gtc.13116\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gtc.13116","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A zinc-finger protein Moc3 functions as a transcription activator to promote RNAi-dependent constitutive heterochromatin establishment in fission yeast
In fission yeast, Schizosaccharomyces pombe, constitutive heterochromatin defined by methylation of histone H3 lysine 9 (H3K9me) and its binding protein Swi6/HP1 localizes at the telomere, centromere, and mating-type loci. These loci contain DNA sequences called dg and dh, and the RNA interference (RNAi)-dependent system establishes and maintains heterochromatin at dg/dh. Bi-directional transcription at dg/dh induced by RNA polymerase II is critical in RNAi-dependent heterochromatin formation because the transcribed RNAs provide substrates for siRNA synthesis and a platform for assembling RNAi factors. However, a regulator of dg/dh transcription during the establishment of heterochromatin is not known. Here, we found that a zinc-finger protein Moc3 localizes dh and activates dh-forward transcription in its zinc-finger-dependent manner when heterochromatin structure or heterochromatin-dependent silencing is compromised. However, Moc3 does not localize at normal heterochromatin and does not activate the dh-forward transcription. Notably, the loss of Moc3 caused a retarded heterochromatin establishment, showing that Moc3-dependent dh-forward transcription is critical for RNAi-dependent heterochromatin establishment. Therefore, Moc3 is a transcriptional activator that induces RNAi to establish heterochromatin.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.