Meredith B. Pfennig, Derek P. Crane, Nate G. Smith, Dave L. Buckmeier
{"title":"德克萨斯州中部四种鱼类耳石、刺和鳍条的年龄估计与验证","authors":"Meredith B. Pfennig, Derek P. Crane, Nate G. Smith, Dave L. Buckmeier","doi":"10.1002/nafm.10997","DOIUrl":null,"url":null,"abstract":"ObjectiveAge estimation methods have not been validated for many species. Thus, we focused this age estimation study on four species from central Texas: the Guadalupe Bass <jats:italic>Micropterus treculii</jats:italic>, Channel Catfish <jats:italic>Ictalurus punctatus</jats:italic>, Gray Redhorse <jats:italic>Moxostoma congestum</jats:italic>, and Redbreast Sunfish <jats:italic>Lepomis auritus</jats:italic>. Our objectives for each species were to (1) investigate whether increments form annually in otoliths, fin rays, or spines; (2) determine the seasonal timing of zone deposition in each calcified structure; and (3) compare age estimates between otoliths and fin rays or spines.MethodsFish were sampled from central Texas waters and injected with oxytetracycline (OTC) quarterly in 2021. In July 2022, otoliths and fin rays or spines were collected to determine whether the increments formed annually and to estimate age.ResultOn average, two readers identified the correct number of annuli after the OTC mark in at least 95% of Gray Redhorse, Guadalupe Bass, and Redbreast Sunfish otoliths but in only 69% of Channel Catfish otoliths. However, the more experienced reader identified the correct number of annuli in at least 95% of otoliths from age‐2–4 Channel Catfish. Compared to otoliths, the correct number of annuli after the OTC mark was identified in a smaller percentage of fin rays or spines (47–62%). The probability of identifying the correct number of annuli after the OTC mark differed between the two readers for all spines and fin rays. Age difference plots revealed that age estimates based on fin rays or spines were either overestimated or underestimated compared to otolith‐based ages for all species.ConclusionWe consider annual increment formation in otoliths to be validated for all age‐classes of Gray Redhorse, Guadalupe Bass, and Redbreast Sunfish examined and for ages 2–4 of Channel Catfish. Differences in correctness between readers were most likely due to differences in age estimation experience. Given the level of error observed in our study, caution is advised if using age estimates from unvalidated structures and species.","PeriodicalId":19263,"journal":{"name":"North American Journal of Fisheries Management","volume":"19 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Age estimation and validation in otoliths, spines, and fin rays from four central Texas fishes\",\"authors\":\"Meredith B. Pfennig, Derek P. Crane, Nate G. Smith, Dave L. Buckmeier\",\"doi\":\"10.1002/nafm.10997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ObjectiveAge estimation methods have not been validated for many species. Thus, we focused this age estimation study on four species from central Texas: the Guadalupe Bass <jats:italic>Micropterus treculii</jats:italic>, Channel Catfish <jats:italic>Ictalurus punctatus</jats:italic>, Gray Redhorse <jats:italic>Moxostoma congestum</jats:italic>, and Redbreast Sunfish <jats:italic>Lepomis auritus</jats:italic>. Our objectives for each species were to (1) investigate whether increments form annually in otoliths, fin rays, or spines; (2) determine the seasonal timing of zone deposition in each calcified structure; and (3) compare age estimates between otoliths and fin rays or spines.MethodsFish were sampled from central Texas waters and injected with oxytetracycline (OTC) quarterly in 2021. In July 2022, otoliths and fin rays or spines were collected to determine whether the increments formed annually and to estimate age.ResultOn average, two readers identified the correct number of annuli after the OTC mark in at least 95% of Gray Redhorse, Guadalupe Bass, and Redbreast Sunfish otoliths but in only 69% of Channel Catfish otoliths. However, the more experienced reader identified the correct number of annuli in at least 95% of otoliths from age‐2–4 Channel Catfish. Compared to otoliths, the correct number of annuli after the OTC mark was identified in a smaller percentage of fin rays or spines (47–62%). The probability of identifying the correct number of annuli after the OTC mark differed between the two readers for all spines and fin rays. Age difference plots revealed that age estimates based on fin rays or spines were either overestimated or underestimated compared to otolith‐based ages for all species.ConclusionWe consider annual increment formation in otoliths to be validated for all age‐classes of Gray Redhorse, Guadalupe Bass, and Redbreast Sunfish examined and for ages 2–4 of Channel Catfish. Differences in correctness between readers were most likely due to differences in age estimation experience. Given the level of error observed in our study, caution is advised if using age estimates from unvalidated structures and species.\",\"PeriodicalId\":19263,\"journal\":{\"name\":\"North American Journal of Fisheries Management\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"North American Journal of Fisheries Management\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1002/nafm.10997\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"North American Journal of Fisheries Management","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/nafm.10997","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FISHERIES","Score":null,"Total":0}
Age estimation and validation in otoliths, spines, and fin rays from four central Texas fishes
ObjectiveAge estimation methods have not been validated for many species. Thus, we focused this age estimation study on four species from central Texas: the Guadalupe Bass Micropterus treculii, Channel Catfish Ictalurus punctatus, Gray Redhorse Moxostoma congestum, and Redbreast Sunfish Lepomis auritus. Our objectives for each species were to (1) investigate whether increments form annually in otoliths, fin rays, or spines; (2) determine the seasonal timing of zone deposition in each calcified structure; and (3) compare age estimates between otoliths and fin rays or spines.MethodsFish were sampled from central Texas waters and injected with oxytetracycline (OTC) quarterly in 2021. In July 2022, otoliths and fin rays or spines were collected to determine whether the increments formed annually and to estimate age.ResultOn average, two readers identified the correct number of annuli after the OTC mark in at least 95% of Gray Redhorse, Guadalupe Bass, and Redbreast Sunfish otoliths but in only 69% of Channel Catfish otoliths. However, the more experienced reader identified the correct number of annuli in at least 95% of otoliths from age‐2–4 Channel Catfish. Compared to otoliths, the correct number of annuli after the OTC mark was identified in a smaller percentage of fin rays or spines (47–62%). The probability of identifying the correct number of annuli after the OTC mark differed between the two readers for all spines and fin rays. Age difference plots revealed that age estimates based on fin rays or spines were either overestimated or underestimated compared to otolith‐based ages for all species.ConclusionWe consider annual increment formation in otoliths to be validated for all age‐classes of Gray Redhorse, Guadalupe Bass, and Redbreast Sunfish examined and for ages 2–4 of Channel Catfish. Differences in correctness between readers were most likely due to differences in age estimation experience. Given the level of error observed in our study, caution is advised if using age estimates from unvalidated structures and species.
期刊介绍:
The North American Journal of Fisheries Management promotes communication among fishery managers with an emphasis on North America, and addresses the maintenance, enhancement, and allocation of fisheries resources. It chronicles the development of practical monitoring and management programs for finfish and exploitable shellfish in marine and freshwater environments.
Contributions relate to the management of fish populations, habitats, and users to protect and enhance fish and fishery resources for societal benefits. Case histories of successes, failures, and effects of fisheries programs help convey practical management experience to others.