制备含氧空位的 BiOBrxCl1-x 固溶体光催化剂,用于在模拟阳光下降解甲基橙

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-04-16 DOI:10.1002/jccs.202300455
Kunhua Ren, Fubo Shao, Hui Li, Xiqiang Mao, Jian Yang, Ximei Fan
{"title":"制备含氧空位的 BiOBrxCl1-x 固溶体光催化剂,用于在模拟阳光下降解甲基橙","authors":"Kunhua Ren,&nbsp;Fubo Shao,&nbsp;Hui Li,&nbsp;Xiqiang Mao,&nbsp;Jian Yang,&nbsp;Ximei Fan","doi":"10.1002/jccs.202300455","DOIUrl":null,"url":null,"abstract":"<p>BiOBr<sub>x</sub>Cl<sub>1-x</sub> solid solution with oxygen vacancies was synthesized using a simple one-step hydrothermal method. The sample was characterized using comprehensive characterization techniques, and the results showed that the solid solution material was successfully prepared. Adjusting the relative proportion of halogens in BiOBr<sub>x</sub>Cl<sub>1-x</sub> solid solution has a significant impact on the morphology, optical properties, and photocatalytic activity of the sample, and oxygen vacancies are introduced into the material. The presence of oxygen vacancies improves the separation efficiency of charge carriers and facilitates the activation of oxygen molecules into superoxide radicals. Among them, BiOBr<sub>0.2</sub>Cl<sub>0.8</sub> showed flower-like microspheres morphology and exhibited the best photocatalytic activity. After 30 min of dark adsorption and 1 h of simulated sunlight exposure, the removal rate of methyl orange (MO) was 92.5%, which was 2.38 times higher than that of pure BiOBr (38.9%) and 2.09 times higher than that of pure BiOCl (44.3%), respectively.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of BiOBrxCl1-x solid solution photocatalyst with oxygen vacancies for degradation of methyl orange under simulated sunlight\",\"authors\":\"Kunhua Ren,&nbsp;Fubo Shao,&nbsp;Hui Li,&nbsp;Xiqiang Mao,&nbsp;Jian Yang,&nbsp;Ximei Fan\",\"doi\":\"10.1002/jccs.202300455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>BiOBr<sub>x</sub>Cl<sub>1-x</sub> solid solution with oxygen vacancies was synthesized using a simple one-step hydrothermal method. The sample was characterized using comprehensive characterization techniques, and the results showed that the solid solution material was successfully prepared. Adjusting the relative proportion of halogens in BiOBr<sub>x</sub>Cl<sub>1-x</sub> solid solution has a significant impact on the morphology, optical properties, and photocatalytic activity of the sample, and oxygen vacancies are introduced into the material. The presence of oxygen vacancies improves the separation efficiency of charge carriers and facilitates the activation of oxygen molecules into superoxide radicals. Among them, BiOBr<sub>0.2</sub>Cl<sub>0.8</sub> showed flower-like microspheres morphology and exhibited the best photocatalytic activity. After 30 min of dark adsorption and 1 h of simulated sunlight exposure, the removal rate of methyl orange (MO) was 92.5%, which was 2.38 times higher than that of pure BiOBr (38.9%) and 2.09 times higher than that of pure BiOCl (44.3%), respectively.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jccs.202300455\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jccs.202300455","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

采用简单的一步水热法合成了含氧空位的 BiOBrxCl1-x 固溶体。采用综合表征技术对样品进行了表征,结果表明该固溶体材料制备成功。调整 BiOBrxCl1-x 固溶体中卤素的相对比例会对样品的形貌、光学性质和光催化活性产生显著影响,并在材料中引入氧空位。氧空位的存在提高了电荷载流子的分离效率,有利于氧分子活化成超氧化物自由基。其中,BiOBr0.2Cl0.8 呈花朵状微球形态,光催化活性最好。在暗吸附 30 分钟和模拟阳光照射 1 小时后,甲基橙(MO)的去除率为 92.5%,分别是纯 BiOBr(38.9%)和纯 BiOCl(44.3%)的 2.38 倍和 2.09 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preparation of BiOBrxCl1-x solid solution photocatalyst with oxygen vacancies for degradation of methyl orange under simulated sunlight

BiOBrxCl1-x solid solution with oxygen vacancies was synthesized using a simple one-step hydrothermal method. The sample was characterized using comprehensive characterization techniques, and the results showed that the solid solution material was successfully prepared. Adjusting the relative proportion of halogens in BiOBrxCl1-x solid solution has a significant impact on the morphology, optical properties, and photocatalytic activity of the sample, and oxygen vacancies are introduced into the material. The presence of oxygen vacancies improves the separation efficiency of charge carriers and facilitates the activation of oxygen molecules into superoxide radicals. Among them, BiOBr0.2Cl0.8 showed flower-like microspheres morphology and exhibited the best photocatalytic activity. After 30 min of dark adsorption and 1 h of simulated sunlight exposure, the removal rate of methyl orange (MO) was 92.5%, which was 2.38 times higher than that of pure BiOBr (38.9%) and 2.09 times higher than that of pure BiOCl (44.3%), respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1