考虑水平地震作用下摩擦效应的桥梁支座非线性模型

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-04-17 DOI:10.1177/13694332241247917
Dong-Hui Yang, Yong-Chang Zhang, Xu Zheng, Ting-Hua Yi, Hong-Nan Li
{"title":"考虑水平地震作用下摩擦效应的桥梁支座非线性模型","authors":"Dong-Hui Yang, Yong-Chang Zhang, Xu Zheng, Ting-Hua Yi, Hong-Nan Li","doi":"10.1177/13694332241247917","DOIUrl":null,"url":null,"abstract":"Bearings are regarded as a crucial element that impacts the overall performance of the seismic analysis of bridges. The assessment of seismic performance in bridges heavily depends on the nonlinear features of bridge bearings. Therefore, it is essential to simulate the nonlinear mechanical behavior of bridge bearings to attain the required accuracy of seismic analysis. This paper examines the friction features of pot bearings using the Bouc-Wen hysteretic model, based on which a nonlinear model of pot bearings is proposed. The proposed model can rapidly and effectively analyze the nonlinear mechanical behaviors of bridge bearings under horizontal earthquakes by adequately simplifying the mechanical properties of these bearings. The accuracy of the model for horizontal seismic effects analysis is validated using a numerical simulation method. The simulation compares the nonlinear model seismic effects of the bearing with a linear-elastic model that ignores the bearing frictional effects under horizontal seismic action. The results demonstrated that in the proposed nonlinear model, the ratio of the composite bending moment and yield bending moment of the pier bottom section (demand capacity ratio) is lower than that of the linear elastic model, leading to a more accurate analysis of horizontal seismic effects and thus preventing overestimation of seismic consequences.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear model of bridge bearings considering friction effect under horizontal seismic action\",\"authors\":\"Dong-Hui Yang, Yong-Chang Zhang, Xu Zheng, Ting-Hua Yi, Hong-Nan Li\",\"doi\":\"10.1177/13694332241247917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bearings are regarded as a crucial element that impacts the overall performance of the seismic analysis of bridges. The assessment of seismic performance in bridges heavily depends on the nonlinear features of bridge bearings. Therefore, it is essential to simulate the nonlinear mechanical behavior of bridge bearings to attain the required accuracy of seismic analysis. This paper examines the friction features of pot bearings using the Bouc-Wen hysteretic model, based on which a nonlinear model of pot bearings is proposed. The proposed model can rapidly and effectively analyze the nonlinear mechanical behaviors of bridge bearings under horizontal earthquakes by adequately simplifying the mechanical properties of these bearings. The accuracy of the model for horizontal seismic effects analysis is validated using a numerical simulation method. The simulation compares the nonlinear model seismic effects of the bearing with a linear-elastic model that ignores the bearing frictional effects under horizontal seismic action. The results demonstrated that in the proposed nonlinear model, the ratio of the composite bending moment and yield bending moment of the pier bottom section (demand capacity ratio) is lower than that of the linear elastic model, leading to a more accurate analysis of horizontal seismic effects and thus preventing overestimation of seismic consequences.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/13694332241247917\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/13694332241247917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

支座被认为是影响桥梁抗震分析整体性能的关键因素。桥梁抗震性能的评估在很大程度上取决于桥梁支座的非线性特征。因此,必须模拟桥梁支座的非线性机械行为,以达到所需的抗震分析精度。本文利用 Bouc-Wen 滞后模型研究了盆式支座的摩擦特性,并在此基础上提出了盆式支座的非线性模型。通过充分简化桥梁支座的力学特性,所提出的模型可以快速有效地分析水平地震下桥梁支座的非线性力学行为。利用数值模拟方法验证了该模型在水平地震效应分析中的准确性。模拟将轴承的非线性地震效应模型与忽略水平地震作用下轴承摩擦效应的线性弹性模型进行了比较。结果表明,在所提出的非线性模型中,墩底截面的复合弯矩与屈服弯矩之比(需求能力比)低于线性弹性模型,从而能更准确地分析水平地震效应,防止高估地震后果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nonlinear model of bridge bearings considering friction effect under horizontal seismic action
Bearings are regarded as a crucial element that impacts the overall performance of the seismic analysis of bridges. The assessment of seismic performance in bridges heavily depends on the nonlinear features of bridge bearings. Therefore, it is essential to simulate the nonlinear mechanical behavior of bridge bearings to attain the required accuracy of seismic analysis. This paper examines the friction features of pot bearings using the Bouc-Wen hysteretic model, based on which a nonlinear model of pot bearings is proposed. The proposed model can rapidly and effectively analyze the nonlinear mechanical behaviors of bridge bearings under horizontal earthquakes by adequately simplifying the mechanical properties of these bearings. The accuracy of the model for horizontal seismic effects analysis is validated using a numerical simulation method. The simulation compares the nonlinear model seismic effects of the bearing with a linear-elastic model that ignores the bearing frictional effects under horizontal seismic action. The results demonstrated that in the proposed nonlinear model, the ratio of the composite bending moment and yield bending moment of the pier bottom section (demand capacity ratio) is lower than that of the linear elastic model, leading to a more accurate analysis of horizontal seismic effects and thus preventing overestimation of seismic consequences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1