{"title":"用于无磁非互斥性和近乎完全频率转换的时空调制加载线元规","authors":"Yakir Hadad and Dimitrios Sounas","doi":"10.1364/ome.515628","DOIUrl":null,"url":null,"abstract":"In recent years, significant progress has been made in the development of magnet-less nonreciprocity using space-time modulation, both in electromagnetics and acoustics. This approach has so far resulted in a plethora of non-reciprocal devices, such as isolators and circulators, over different parts of the spectrum, for guided waves. On the other hand, very little work has been performed on non-reciprocal devices for waves propagating in free space, which can also have many practical applications. For example, it was shown theoretically that non-reciprocal scattering by a metasurface can be obtained if the surface-impedance operator is continuously modulated in space and time. However, the main challenge in the realization of such a metasurface is due to the high complexity required to modulate in space and time many sub-wavelength unit-cells of which the metasurface consists. In this paper, we show that spatiotemporally modulated metagratings can lead to strong nonreciprocal responses, even though they are based on electrically-large unit cells and use only three modulation domains. We specifically focus on wire metagratings loaded with time-modulated capacitances. We use the discrete-dipole approximation and an ad-hoc generalization of the theory of polarizability for time-modulated particles and demonstrate an effective non-reciprocal anomalous reflection (diffraction) with an efficient frequency conversion. Thus, our work opens a venue for a practical design and implementation of highly non-reciprocal magnet-less metasurfaces in electromagnetics and acoustics.","PeriodicalId":19548,"journal":{"name":"Optical Materials Express","volume":"21 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Space-time modulated loaded-wire metagratings for magnetless nonreciprocity and near-complete frequency conversion\",\"authors\":\"Yakir Hadad and Dimitrios Sounas\",\"doi\":\"10.1364/ome.515628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, significant progress has been made in the development of magnet-less nonreciprocity using space-time modulation, both in electromagnetics and acoustics. This approach has so far resulted in a plethora of non-reciprocal devices, such as isolators and circulators, over different parts of the spectrum, for guided waves. On the other hand, very little work has been performed on non-reciprocal devices for waves propagating in free space, which can also have many practical applications. For example, it was shown theoretically that non-reciprocal scattering by a metasurface can be obtained if the surface-impedance operator is continuously modulated in space and time. However, the main challenge in the realization of such a metasurface is due to the high complexity required to modulate in space and time many sub-wavelength unit-cells of which the metasurface consists. In this paper, we show that spatiotemporally modulated metagratings can lead to strong nonreciprocal responses, even though they are based on electrically-large unit cells and use only three modulation domains. We specifically focus on wire metagratings loaded with time-modulated capacitances. We use the discrete-dipole approximation and an ad-hoc generalization of the theory of polarizability for time-modulated particles and demonstrate an effective non-reciprocal anomalous reflection (diffraction) with an efficient frequency conversion. Thus, our work opens a venue for a practical design and implementation of highly non-reciprocal magnet-less metasurfaces in electromagnetics and acoustics.\",\"PeriodicalId\":19548,\"journal\":{\"name\":\"Optical Materials Express\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Materials Express\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1364/ome.515628\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Materials Express","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1364/ome.515628","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Space-time modulated loaded-wire metagratings for magnetless nonreciprocity and near-complete frequency conversion
In recent years, significant progress has been made in the development of magnet-less nonreciprocity using space-time modulation, both in electromagnetics and acoustics. This approach has so far resulted in a plethora of non-reciprocal devices, such as isolators and circulators, over different parts of the spectrum, for guided waves. On the other hand, very little work has been performed on non-reciprocal devices for waves propagating in free space, which can also have many practical applications. For example, it was shown theoretically that non-reciprocal scattering by a metasurface can be obtained if the surface-impedance operator is continuously modulated in space and time. However, the main challenge in the realization of such a metasurface is due to the high complexity required to modulate in space and time many sub-wavelength unit-cells of which the metasurface consists. In this paper, we show that spatiotemporally modulated metagratings can lead to strong nonreciprocal responses, even though they are based on electrically-large unit cells and use only three modulation domains. We specifically focus on wire metagratings loaded with time-modulated capacitances. We use the discrete-dipole approximation and an ad-hoc generalization of the theory of polarizability for time-modulated particles and demonstrate an effective non-reciprocal anomalous reflection (diffraction) with an efficient frequency conversion. Thus, our work opens a venue for a practical design and implementation of highly non-reciprocal magnet-less metasurfaces in electromagnetics and acoustics.
期刊介绍:
The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community.
Optical Materials Express (OMEx), OSA''s open-access, rapid-review journal, primarily emphasizes advances in both conventional and novel optical materials, their properties, theory and modeling, synthesis and fabrication approaches for optics and photonics; how such materials contribute to novel optical behavior; and how they enable new or improved optical devices. The journal covers a full range of topics, including, but not limited to:
Artificially engineered optical structures
Biomaterials
Optical detector materials
Optical storage media
Materials for integrated optics
Nonlinear optical materials
Laser materials
Metamaterials
Nanomaterials
Organics and polymers
Soft materials
IR materials
Materials for fiber optics
Hybrid technologies
Materials for quantum photonics
Optical Materials Express considers original research articles, feature issue contributions, invited reviews, and comments on published articles. The Journal also publishes occasional short, timely opinion articles from experts and thought-leaders in the field on current or emerging topic areas that are generating significant interest.