V. S. Vesnin, P. A. Nevolko, T. V. Svetlitskaya, P. A. Fominykh, D. V. Bondarchuk
{"title":"磷灰石地球化学作为斑岩系统的肥力工具(以俄罗斯外贝加尔地区东部的 Shakhtama Mo 斑岩和 Bystrinsky 铜-金-铁-斑岩-矽卡岩矿床为例)","authors":"V. S. Vesnin, P. A. Nevolko, T. V. Svetlitskaya, P. A. Fominykh, D. V. Bondarchuk","doi":"10.1134/s1075701524010070","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The Bystrinsky Cu–Au–Fe porphyry–skarn and Shakhtama Mo-porphyry deposits are located in Eastern Transbaikalia, Russia. The host rocks in the deposits are multiphase granitoid plutons of the Middle–Late Jurassic Shakhtama complex. Economical mineralization is genetically related to small bodies of granite porphyries and granodiorite porphyries of late phases. To identify the specifics of fertile magmatic rocks, the composition of volatile components and rare-earth elements in apatite from fertile and barren intrusions was studied. Special attention was paid to the proof of the primary magmatic origin of apatite and the absence of influence of metasomatic alteration processes on their composition. It was shown that fertile intrusions at the Bystrinsky and Shakhtama deposits are characterized by an increased SO<sub>3</sub> content in apatite, which indicates their formation from oxidized melts. In addition, it is shown that the presence of sulfate sulfur in the melt is a necessary for the sulfide ore formation. It has been established that a high Cl content (>0.8 wt %) in fertile magmatic rocks, which ensures the transfer of chalcophilic elements, is a characteristic difference between apatites from Cu-porphyry and Mo-porphyry systems. The content of volatile apatite can be used as a sign of fertility for porphyry systems. An analysis of the trace element composition of apatite made it possible to establish that apatites from fertile granitoids of the Shakhtama and Bystrinsky deposits are characterized by Eu/Eu* > 0.4, which indicates the oxidation and high water saturation of the parental melts. The revealed characteristics of apatite from fertile intrusions and their discreteness from barren granitoids can serve as a sign of fertility of igneous rocks for porphyry mineralization.</p>","PeriodicalId":12719,"journal":{"name":"Geology of Ore Deposits","volume":"36 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Apatite Geochemistry As a Fertility Tool for Porphyry Systems (Using the Example of the Shakhtama Mo-Porphyry and Bystrinsky Cu–Au–Fe-Porphyry–Skarn Deposits, Eastern Transbaikalia, Russia)\",\"authors\":\"V. S. Vesnin, P. A. Nevolko, T. V. Svetlitskaya, P. A. Fominykh, D. V. Bondarchuk\",\"doi\":\"10.1134/s1075701524010070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The Bystrinsky Cu–Au–Fe porphyry–skarn and Shakhtama Mo-porphyry deposits are located in Eastern Transbaikalia, Russia. The host rocks in the deposits are multiphase granitoid plutons of the Middle–Late Jurassic Shakhtama complex. Economical mineralization is genetically related to small bodies of granite porphyries and granodiorite porphyries of late phases. To identify the specifics of fertile magmatic rocks, the composition of volatile components and rare-earth elements in apatite from fertile and barren intrusions was studied. Special attention was paid to the proof of the primary magmatic origin of apatite and the absence of influence of metasomatic alteration processes on their composition. It was shown that fertile intrusions at the Bystrinsky and Shakhtama deposits are characterized by an increased SO<sub>3</sub> content in apatite, which indicates their formation from oxidized melts. In addition, it is shown that the presence of sulfate sulfur in the melt is a necessary for the sulfide ore formation. It has been established that a high Cl content (>0.8 wt %) in fertile magmatic rocks, which ensures the transfer of chalcophilic elements, is a characteristic difference between apatites from Cu-porphyry and Mo-porphyry systems. The content of volatile apatite can be used as a sign of fertility for porphyry systems. An analysis of the trace element composition of apatite made it possible to establish that apatites from fertile granitoids of the Shakhtama and Bystrinsky deposits are characterized by Eu/Eu* > 0.4, which indicates the oxidation and high water saturation of the parental melts. The revealed characteristics of apatite from fertile intrusions and their discreteness from barren granitoids can serve as a sign of fertility of igneous rocks for porphyry mineralization.</p>\",\"PeriodicalId\":12719,\"journal\":{\"name\":\"Geology of Ore Deposits\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geology of Ore Deposits\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1134/s1075701524010070\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geology of Ore Deposits","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1134/s1075701524010070","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOLOGY","Score":null,"Total":0}
Apatite Geochemistry As a Fertility Tool for Porphyry Systems (Using the Example of the Shakhtama Mo-Porphyry and Bystrinsky Cu–Au–Fe-Porphyry–Skarn Deposits, Eastern Transbaikalia, Russia)
Abstract
The Bystrinsky Cu–Au–Fe porphyry–skarn and Shakhtama Mo-porphyry deposits are located in Eastern Transbaikalia, Russia. The host rocks in the deposits are multiphase granitoid plutons of the Middle–Late Jurassic Shakhtama complex. Economical mineralization is genetically related to small bodies of granite porphyries and granodiorite porphyries of late phases. To identify the specifics of fertile magmatic rocks, the composition of volatile components and rare-earth elements in apatite from fertile and barren intrusions was studied. Special attention was paid to the proof of the primary magmatic origin of apatite and the absence of influence of metasomatic alteration processes on their composition. It was shown that fertile intrusions at the Bystrinsky and Shakhtama deposits are characterized by an increased SO3 content in apatite, which indicates their formation from oxidized melts. In addition, it is shown that the presence of sulfate sulfur in the melt is a necessary for the sulfide ore formation. It has been established that a high Cl content (>0.8 wt %) in fertile magmatic rocks, which ensures the transfer of chalcophilic elements, is a characteristic difference between apatites from Cu-porphyry and Mo-porphyry systems. The content of volatile apatite can be used as a sign of fertility for porphyry systems. An analysis of the trace element composition of apatite made it possible to establish that apatites from fertile granitoids of the Shakhtama and Bystrinsky deposits are characterized by Eu/Eu* > 0.4, which indicates the oxidation and high water saturation of the parental melts. The revealed characteristics of apatite from fertile intrusions and their discreteness from barren granitoids can serve as a sign of fertility of igneous rocks for porphyry mineralization.
期刊介绍:
Geology of Ore Deposits is a periodical covering the topic of metallic and nonmetallic mineral deposits, their formation conditions, and spatial and temporal distribution. The journal publishes original scientific articles and reviews on a wide range of problems in theoretical and applied geology. The journal focuses on the following problems: deep geological structure and geodynamic environment of ore formation; distribution pattern of metallogenic zones and mineral deposits; geology and formation environment of large and unique metallic and nonmetallic deposits; mineralogy of metallic and nonmetallic deposits; physicochemical and isotopic characteristics and geochemical environment of ore deposition; evolution of ore-forming systems; radiogeology and radioecology, economic problems in exploring, developing, and mining of ore commodities.