Sophie Mandl , Johanna Alexopoulos , Stephan Doering , Brigitte Wildner , Rainer Seidl , Lisa Bartha-Doering
{"title":"产前母亲痛苦对后代大脑发育的影响:系统回顾","authors":"Sophie Mandl , Johanna Alexopoulos , Stephan Doering , Brigitte Wildner , Rainer Seidl , Lisa Bartha-Doering","doi":"10.1016/j.earlhumdev.2024.106009","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Prenatal maternal distress can negatively affect pregnancy outcomes, yet its impact on the offspring's brain structure and function remains unclear. This systematic review summarizes the available literature on the relationship between prenatal maternal distress and brain development in fetuses and infants up to 12 months of age.</p></div><div><h3>Methods</h3><p>We searched Central, Embase, MEDLINE, PsycINFO, and PSYNDEXplus for studies published between database inception and December 2023. Studies were included if prenatal maternal anxiety, stress, and/or depression was assessed, neuroimaging was used to examine the offspring, and the offspring's brain was imaged within the first year of life. The quality of the included studies was evaluated using the Quality Assessment of Diagnostic Accuracy Studies-II.</p></div><div><h3>Results</h3><p>Out of the 1516 studies retrieved, 71 met our inclusion criteria. Although the studies varied greatly in their methodology, the results generally pointed to structural and functional aberrations in the limbic system, prefrontal cortex, and insula in fetuses and infants prenatally exposed to maternal distress.</p></div><div><h3>Conclusions</h3><p>The hippocampus, amygdala, and prefrontal cortex have a high density of glucocorticoid receptors, which play a key role in adapting to stressors and maintaining stress-related homeostasis. We thus conclude that in utero exposure to maternal distress prompts these brain regions to adapt by undergoing structural and functional changes, with the consequence that these alterations increase the risk for developing a neuropsychiatric illness later on. Future research should investigate the effect of providing psychological support for pregnant women on the offspring's early brain development.</p></div>","PeriodicalId":11435,"journal":{"name":"Early human development","volume":"192 ","pages":"Article 106009"},"PeriodicalIF":2.2000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378378224000781/pdfft?md5=51b0dbe736d38d088284c066bc00b50a&pid=1-s2.0-S0378378224000781-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The effect of prenatal maternal distress on offspring brain development: A systematic review\",\"authors\":\"Sophie Mandl , Johanna Alexopoulos , Stephan Doering , Brigitte Wildner , Rainer Seidl , Lisa Bartha-Doering\",\"doi\":\"10.1016/j.earlhumdev.2024.106009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Prenatal maternal distress can negatively affect pregnancy outcomes, yet its impact on the offspring's brain structure and function remains unclear. This systematic review summarizes the available literature on the relationship between prenatal maternal distress and brain development in fetuses and infants up to 12 months of age.</p></div><div><h3>Methods</h3><p>We searched Central, Embase, MEDLINE, PsycINFO, and PSYNDEXplus for studies published between database inception and December 2023. Studies were included if prenatal maternal anxiety, stress, and/or depression was assessed, neuroimaging was used to examine the offspring, and the offspring's brain was imaged within the first year of life. The quality of the included studies was evaluated using the Quality Assessment of Diagnostic Accuracy Studies-II.</p></div><div><h3>Results</h3><p>Out of the 1516 studies retrieved, 71 met our inclusion criteria. Although the studies varied greatly in their methodology, the results generally pointed to structural and functional aberrations in the limbic system, prefrontal cortex, and insula in fetuses and infants prenatally exposed to maternal distress.</p></div><div><h3>Conclusions</h3><p>The hippocampus, amygdala, and prefrontal cortex have a high density of glucocorticoid receptors, which play a key role in adapting to stressors and maintaining stress-related homeostasis. We thus conclude that in utero exposure to maternal distress prompts these brain regions to adapt by undergoing structural and functional changes, with the consequence that these alterations increase the risk for developing a neuropsychiatric illness later on. Future research should investigate the effect of providing psychological support for pregnant women on the offspring's early brain development.</p></div>\",\"PeriodicalId\":11435,\"journal\":{\"name\":\"Early human development\",\"volume\":\"192 \",\"pages\":\"Article 106009\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0378378224000781/pdfft?md5=51b0dbe736d38d088284c066bc00b50a&pid=1-s2.0-S0378378224000781-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Early human development\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378378224000781\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OBSTETRICS & GYNECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Early human development","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378378224000781","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OBSTETRICS & GYNECOLOGY","Score":null,"Total":0}
The effect of prenatal maternal distress on offspring brain development: A systematic review
Background
Prenatal maternal distress can negatively affect pregnancy outcomes, yet its impact on the offspring's brain structure and function remains unclear. This systematic review summarizes the available literature on the relationship between prenatal maternal distress and brain development in fetuses and infants up to 12 months of age.
Methods
We searched Central, Embase, MEDLINE, PsycINFO, and PSYNDEXplus for studies published between database inception and December 2023. Studies were included if prenatal maternal anxiety, stress, and/or depression was assessed, neuroimaging was used to examine the offspring, and the offspring's brain was imaged within the first year of life. The quality of the included studies was evaluated using the Quality Assessment of Diagnostic Accuracy Studies-II.
Results
Out of the 1516 studies retrieved, 71 met our inclusion criteria. Although the studies varied greatly in their methodology, the results generally pointed to structural and functional aberrations in the limbic system, prefrontal cortex, and insula in fetuses and infants prenatally exposed to maternal distress.
Conclusions
The hippocampus, amygdala, and prefrontal cortex have a high density of glucocorticoid receptors, which play a key role in adapting to stressors and maintaining stress-related homeostasis. We thus conclude that in utero exposure to maternal distress prompts these brain regions to adapt by undergoing structural and functional changes, with the consequence that these alterations increase the risk for developing a neuropsychiatric illness later on. Future research should investigate the effect of providing psychological support for pregnant women on the offspring's early brain development.
期刊介绍:
Established as an authoritative, highly cited voice on early human development, Early Human Development provides a unique opportunity for researchers and clinicians to bridge the communication gap between disciplines. Creating a forum for the productive exchange of ideas concerning early human growth and development, the journal publishes original research and clinical papers with particular emphasis on the continuum between fetal life and the perinatal period; aspects of postnatal growth influenced by early events; and the safeguarding of the quality of human survival.
The first comprehensive and interdisciplinary journal in this area of growing importance, Early Human Development offers pertinent contributions to the following subject areas:
Fetology; perinatology; pediatrics; growth and development; obstetrics; reproduction and fertility; epidemiology; behavioural sciences; nutrition and metabolism; teratology; neurology; brain biology; developmental psychology and screening.