旋转磁场下铁流体液滴中的液滴

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-04-17 DOI:10.1007/s10665-024-10343-5
Xinping Zhou, Wencai Xiao, Qi Zhang, Wanqiu Zhang, Fei Zhang
{"title":"旋转磁场下铁流体液滴中的液滴","authors":"Xinping Zhou, Wencai Xiao, Qi Zhang, Wanqiu Zhang, Fei Zhang","doi":"10.1007/s10665-024-10343-5","DOIUrl":null,"url":null,"abstract":"<p>Two-dimensional (2-D) direct numerical simulations of a compound droplet (a non-magnetizable droplet wrapped in a ferrofluid droplet) suspended in a non-magnetizable ambient fluid under a rotating uniform magnetic field are carried out. The motion and deformation of the compound droplet are studied. The numerical results show that there are two stable states (the concentric and the eccentric states) for the compound droplet at the stable stage, dependent on the frequency of the rotating magnetic field and the magnetic Bond number. The feature of the concentric state for the compound droplet at the stable stage is studied in detail. We find that the inner and outer parts of the compound droplet rotate with the magnetic field, while there is hysteresis between the inner (or outer) droplet and the external magnetic field. The hysteresis effect for the inner droplet is weaker than that of the outer droplet, mainly due to the viscous sweeping effect of the outer droplet on the inner droplet. Increasing the frequency of the external magnetic field, both the phase angle between the inner and outer droplets and the time required for the compound droplet to shift from the stable eccentric state to the stable concentric one will increase. For the eccentric state at the stable stage, the eccentricity decreases with the frequency of the rotating magnetic field increasing, but has a peak with the magnetic Bond number increasing. It is hoped that this paper would lay a solid foundation for some potential applications in magnetic biodevices.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A droplet in a ferrofluid droplet under a rotating magnetic field\",\"authors\":\"Xinping Zhou, Wencai Xiao, Qi Zhang, Wanqiu Zhang, Fei Zhang\",\"doi\":\"10.1007/s10665-024-10343-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Two-dimensional (2-D) direct numerical simulations of a compound droplet (a non-magnetizable droplet wrapped in a ferrofluid droplet) suspended in a non-magnetizable ambient fluid under a rotating uniform magnetic field are carried out. The motion and deformation of the compound droplet are studied. The numerical results show that there are two stable states (the concentric and the eccentric states) for the compound droplet at the stable stage, dependent on the frequency of the rotating magnetic field and the magnetic Bond number. The feature of the concentric state for the compound droplet at the stable stage is studied in detail. We find that the inner and outer parts of the compound droplet rotate with the magnetic field, while there is hysteresis between the inner (or outer) droplet and the external magnetic field. The hysteresis effect for the inner droplet is weaker than that of the outer droplet, mainly due to the viscous sweeping effect of the outer droplet on the inner droplet. Increasing the frequency of the external magnetic field, both the phase angle between the inner and outer droplets and the time required for the compound droplet to shift from the stable eccentric state to the stable concentric one will increase. For the eccentric state at the stable stage, the eccentricity decreases with the frequency of the rotating magnetic field increasing, but has a peak with the magnetic Bond number increasing. It is hoped that this paper would lay a solid foundation for some potential applications in magnetic biodevices.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10665-024-10343-5\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10665-024-10343-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在旋转均匀磁场下,对悬浮在非磁化环境流体中的复合液滴(包裹在铁流体液滴中的非磁化液滴)进行了二维直接数值模拟。研究了复合液滴的运动和变形。数值结果表明,复合液滴在稳定阶段有两种稳定状态(同心态和偏心态),取决于旋转磁场的频率和磁邦德数。我们详细研究了复合液滴在稳定阶段的同心态特征。我们发现,复合液滴的内部和外部部分随磁场旋转,而内部(或外部)液滴与外部磁场之间存在磁滞效应。内液滴的磁滞效应弱于外液滴,主要是由于外液滴对内液滴的粘性扫掠效应。随着外磁场频率的增加,内外液滴之间的相位角以及复合液滴从稳定的偏心态转变为稳定的同心态所需的时间都会增加。对于稳定阶段的偏心状态,偏心率会随着旋转磁场频率的增加而减小,但会随着磁邦德数的增加而达到峰值。希望本文能为磁性生物设备的一些潜在应用奠定坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A droplet in a ferrofluid droplet under a rotating magnetic field

Two-dimensional (2-D) direct numerical simulations of a compound droplet (a non-magnetizable droplet wrapped in a ferrofluid droplet) suspended in a non-magnetizable ambient fluid under a rotating uniform magnetic field are carried out. The motion and deformation of the compound droplet are studied. The numerical results show that there are two stable states (the concentric and the eccentric states) for the compound droplet at the stable stage, dependent on the frequency of the rotating magnetic field and the magnetic Bond number. The feature of the concentric state for the compound droplet at the stable stage is studied in detail. We find that the inner and outer parts of the compound droplet rotate with the magnetic field, while there is hysteresis between the inner (or outer) droplet and the external magnetic field. The hysteresis effect for the inner droplet is weaker than that of the outer droplet, mainly due to the viscous sweeping effect of the outer droplet on the inner droplet. Increasing the frequency of the external magnetic field, both the phase angle between the inner and outer droplets and the time required for the compound droplet to shift from the stable eccentric state to the stable concentric one will increase. For the eccentric state at the stable stage, the eccentricity decreases with the frequency of the rotating magnetic field increasing, but has a peak with the magnetic Bond number increasing. It is hoped that this paper would lay a solid foundation for some potential applications in magnetic biodevices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1