Tingran Liu, Evaldo Batista Carneiro-Neto, Ernesto Pereira, James E. Taylor, Philip J. Fletcher and Frank Marken*,
{"title":"交织微带电极上的配对电合成:探索无支撑电解质时的扩散和反应区","authors":"Tingran Liu, Evaldo Batista Carneiro-Neto, Ernesto Pereira, James E. Taylor, Philip J. Fletcher and Frank Marken*, ","doi":"10.1021/acsmeasuresciau.4c00009","DOIUrl":null,"url":null,"abstract":"<p >Electrosynthesis traditionally requires dedicated reactor systems and an added electrolyte, although some paired electrosynthesis processes are possible at interdigitated microband electrodes simply immersed in solution and without an intentionally added electrolyte. Here, 1,1′-ferrocenedimethanol oxidation and activated olefin electro-hydrogenation reactions are investigated as model processes at a Pt–Pt interdigitated microband array electrode with 5 μm width and with 5 μm interelectrode gap. Voltammetric responses for electro-hydrogenation are discussed, and product yields are determined in methanol (MeOH) in the presence/absence of an added electrolyte (LiClO<sub>4</sub>). An isotope effect is observed in CH<sub>3</sub>OD solvent, leading to olefin monodeuteration linked to a fast EC-type process close to the cathode surface (in the cathode reaction zone) rather than to charge annihilation in the interelectrode zone. A finite element simulation is employed to visualize/discuss reaction zones and to contrast the rate of charge annihilation processes with/without a supporting electrolyte.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":"4 3","pages":"294–306"},"PeriodicalIF":4.6000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.4c00009","citationCount":"0","resultStr":"{\"title\":\"Paired Electrosynthesis at Interdigitated Microband Electrodes: Exploring Diffusion and Reaction Zones in the Absence of a Supporting Electrolyte\",\"authors\":\"Tingran Liu, Evaldo Batista Carneiro-Neto, Ernesto Pereira, James E. Taylor, Philip J. Fletcher and Frank Marken*, \",\"doi\":\"10.1021/acsmeasuresciau.4c00009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Electrosynthesis traditionally requires dedicated reactor systems and an added electrolyte, although some paired electrosynthesis processes are possible at interdigitated microband electrodes simply immersed in solution and without an intentionally added electrolyte. Here, 1,1′-ferrocenedimethanol oxidation and activated olefin electro-hydrogenation reactions are investigated as model processes at a Pt–Pt interdigitated microband array electrode with 5 μm width and with 5 μm interelectrode gap. Voltammetric responses for electro-hydrogenation are discussed, and product yields are determined in methanol (MeOH) in the presence/absence of an added electrolyte (LiClO<sub>4</sub>). An isotope effect is observed in CH<sub>3</sub>OD solvent, leading to olefin monodeuteration linked to a fast EC-type process close to the cathode surface (in the cathode reaction zone) rather than to charge annihilation in the interelectrode zone. A finite element simulation is employed to visualize/discuss reaction zones and to contrast the rate of charge annihilation processes with/without a supporting electrolyte.</p>\",\"PeriodicalId\":29800,\"journal\":{\"name\":\"ACS Measurement Science Au\",\"volume\":\"4 3\",\"pages\":\"294–306\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.4c00009\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Measurement Science Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsmeasuresciau.4c00009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Measurement Science Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmeasuresciau.4c00009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Paired Electrosynthesis at Interdigitated Microband Electrodes: Exploring Diffusion and Reaction Zones in the Absence of a Supporting Electrolyte
Electrosynthesis traditionally requires dedicated reactor systems and an added electrolyte, although some paired electrosynthesis processes are possible at interdigitated microband electrodes simply immersed in solution and without an intentionally added electrolyte. Here, 1,1′-ferrocenedimethanol oxidation and activated olefin electro-hydrogenation reactions are investigated as model processes at a Pt–Pt interdigitated microband array electrode with 5 μm width and with 5 μm interelectrode gap. Voltammetric responses for electro-hydrogenation are discussed, and product yields are determined in methanol (MeOH) in the presence/absence of an added electrolyte (LiClO4). An isotope effect is observed in CH3OD solvent, leading to olefin monodeuteration linked to a fast EC-type process close to the cathode surface (in the cathode reaction zone) rather than to charge annihilation in the interelectrode zone. A finite element simulation is employed to visualize/discuss reaction zones and to contrast the rate of charge annihilation processes with/without a supporting electrolyte.
期刊介绍:
ACS Measurement Science Au is an open access journal that publishes experimental computational or theoretical research in all areas of chemical measurement science. Short letters comprehensive articles reviews and perspectives are welcome on topics that report on any phase of analytical operations including sampling measurement and data analysis. This includes:Chemical Reactions and SelectivityChemometrics and Data ProcessingElectrochemistryElemental and Molecular CharacterizationImagingInstrumentationMass SpectrometryMicroscale and Nanoscale systemsOmics (Genomics Proteomics Metabonomics Metabolomics and Bioinformatics)Sensors and Sensing (Biosensors Chemical Sensors Gas Sensors Intracellular Sensors Single-Molecule Sensors Cell Chips Arrays Microfluidic Devices)SeparationsSpectroscopySurface analysisPapers dealing with established methods need to offer a significantly improved original application of the method.