{"title":"通过波诺-梅尔文-兰达时空彩虹引力效应下的克莱因-戈登方程研究标量粒子","authors":"Faizuddin Ahmed, Abdelmalek Bouzenada","doi":"10.1088/1572-9494/ad2e88","DOIUrl":null,"url":null,"abstract":"In our investigation, we explore the quantum dynamics of charge-free scalar particles through the Klein–Gordon equation within the framework of rainbow gravity, considering the Bonnor–Melvin-Lambda (BML) space-time background. The BML solution is characterized by the magnetic field strength along the axis of the symmetry direction which is related to the cosmological constant Λ and the topological parameter <italic toggle=\"yes\">α</italic> of the geometry. The behavior of charge-free scalar particles described by the Klein–Gordon equation is investigated, utilizing two sets of rainbow functions: (i) <inline-formula>\n<tex-math>\n<?CDATA $f(\\chi )=\\tfrac{({{\\rm{e}}}^{\\beta \\,\\chi }-1)}{\\beta \\,\\chi }$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mi>f</mml:mi><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>χ</mml:mi><mml:mo stretchy=\"false\">)</mml:mo><mml:mo>=</mml:mo><mml:mstyle displaystyle=\"false\"><mml:mfrac><mml:mrow><mml:mo stretchy=\"false\">(</mml:mo><mml:msup><mml:mrow><mml:mi mathvariant=\"normal\">e</mml:mi></mml:mrow><mml:mrow><mml:mi>β</mml:mi><mml:mspace width=\"0.25em\"></mml:mspace><mml:mi>χ</mml:mi></mml:mrow></mml:msup><mml:mo>−</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy=\"false\">)</mml:mo></mml:mrow><mml:mrow><mml:mi>β</mml:mi><mml:mspace width=\"0.25em\"></mml:mspace><mml:mi>χ</mml:mi></mml:mrow></mml:mfrac></mml:mstyle></mml:math>\n<inline-graphic xlink:href=\"ctpad2e88ieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>, <italic toggle=\"yes\">h</italic>(<italic toggle=\"yes\">χ</italic>) = 1 and (ii) <italic toggle=\"yes\">f</italic>(<italic toggle=\"yes\">χ</italic>) = 1, <inline-formula>\n<tex-math>\n<?CDATA $h(\\chi )=1+\\tfrac{\\beta \\,\\chi }{2}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mi>h</mml:mi><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>χ</mml:mi><mml:mo stretchy=\"false\">)</mml:mo><mml:mo>=</mml:mo><mml:mn>1</mml:mn><mml:mo>+</mml:mo><mml:mstyle displaystyle=\"false\"><mml:mfrac><mml:mrow><mml:mi>β</mml:mi><mml:mspace width=\"0.25em\"></mml:mspace><mml:mi>χ</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mfrac></mml:mstyle></mml:math>\n<inline-graphic xlink:href=\"ctpad2e88ieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>. Here <inline-formula>\n<tex-math>\n<?CDATA $0\\lt \\left(\\chi =\\tfrac{| E| }{{E}_{p}}\\right)\\leqslant 1$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mn>0</mml:mn><mml:mo><</mml:mo><mml:mfenced close=\")\" open=\"(\"><mml:mrow><mml:mi>χ</mml:mi><mml:mo>=</mml:mo><mml:mstyle displaystyle=\"false\"><mml:mfrac><mml:mrow><mml:mo stretchy=\"false\">∣</mml:mo><mml:mi>E</mml:mi><mml:mo stretchy=\"false\">∣</mml:mo></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi>E</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:mfrac></mml:mstyle></mml:mrow></mml:mfenced><mml:mo>≤</mml:mo><mml:mn>1</mml:mn></mml:math>\n<inline-graphic xlink:href=\"ctpad2e88ieqn3.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> with <italic toggle=\"yes\">E</italic> representing the particle’s energy, <italic toggle=\"yes\">E</italic>\n<sub>\n<italic toggle=\"yes\">p</italic>\n</sub> is the Planck’s energy, and <italic toggle=\"yes\">β</italic> is the rainbow parameter. We obtain the approximate analytical solutions for the scalar particles and conduct a thorough analysis of the obtained results. Afterwards, we study the quantum dynamics of quantum oscillator fields within this BML space-time, employing the Klein–Gordon oscillator. Here also, we choose the same sets of rainbow functions and obtain the approximate eigenvalue solution for the oscillator fields. Notably, we demonstrate that the relativistic approximate energy profiles of charge-free scalar particles and oscillator fields get influenced by the topology of the geometry and the cosmological constant. Furthermore, we show that the energy profiles of scalar particles receive modifications from the rainbow parameter and the quantum oscillator fields by both the rainbow parameter and the frequency of oscillation.","PeriodicalId":10641,"journal":{"name":"Communications in Theoretical Physics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of scalar particles through the Klein–Gordon equation under rainbow gravity effects in Bonnor–Melvin-Lambda space-time\",\"authors\":\"Faizuddin Ahmed, Abdelmalek Bouzenada\",\"doi\":\"10.1088/1572-9494/ad2e88\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In our investigation, we explore the quantum dynamics of charge-free scalar particles through the Klein–Gordon equation within the framework of rainbow gravity, considering the Bonnor–Melvin-Lambda (BML) space-time background. The BML solution is characterized by the magnetic field strength along the axis of the symmetry direction which is related to the cosmological constant Λ and the topological parameter <italic toggle=\\\"yes\\\">α</italic> of the geometry. The behavior of charge-free scalar particles described by the Klein–Gordon equation is investigated, utilizing two sets of rainbow functions: (i) <inline-formula>\\n<tex-math>\\n<?CDATA $f(\\\\chi )=\\\\tfrac{({{\\\\rm{e}}}^{\\\\beta \\\\,\\\\chi }-1)}{\\\\beta \\\\,\\\\chi }$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mi>f</mml:mi><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mi>χ</mml:mi><mml:mo stretchy=\\\"false\\\">)</mml:mo><mml:mo>=</mml:mo><mml:mstyle displaystyle=\\\"false\\\"><mml:mfrac><mml:mrow><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:msup><mml:mrow><mml:mi mathvariant=\\\"normal\\\">e</mml:mi></mml:mrow><mml:mrow><mml:mi>β</mml:mi><mml:mspace width=\\\"0.25em\\\"></mml:mspace><mml:mi>χ</mml:mi></mml:mrow></mml:msup><mml:mo>−</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy=\\\"false\\\">)</mml:mo></mml:mrow><mml:mrow><mml:mi>β</mml:mi><mml:mspace width=\\\"0.25em\\\"></mml:mspace><mml:mi>χ</mml:mi></mml:mrow></mml:mfrac></mml:mstyle></mml:math>\\n<inline-graphic xlink:href=\\\"ctpad2e88ieqn1.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>, <italic toggle=\\\"yes\\\">h</italic>(<italic toggle=\\\"yes\\\">χ</italic>) = 1 and (ii) <italic toggle=\\\"yes\\\">f</italic>(<italic toggle=\\\"yes\\\">χ</italic>) = 1, <inline-formula>\\n<tex-math>\\n<?CDATA $h(\\\\chi )=1+\\\\tfrac{\\\\beta \\\\,\\\\chi }{2}$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mi>h</mml:mi><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mi>χ</mml:mi><mml:mo stretchy=\\\"false\\\">)</mml:mo><mml:mo>=</mml:mo><mml:mn>1</mml:mn><mml:mo>+</mml:mo><mml:mstyle displaystyle=\\\"false\\\"><mml:mfrac><mml:mrow><mml:mi>β</mml:mi><mml:mspace width=\\\"0.25em\\\"></mml:mspace><mml:mi>χ</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mfrac></mml:mstyle></mml:math>\\n<inline-graphic xlink:href=\\\"ctpad2e88ieqn2.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>. Here <inline-formula>\\n<tex-math>\\n<?CDATA $0\\\\lt \\\\left(\\\\chi =\\\\tfrac{| E| }{{E}_{p}}\\\\right)\\\\leqslant 1$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mn>0</mml:mn><mml:mo><</mml:mo><mml:mfenced close=\\\")\\\" open=\\\"(\\\"><mml:mrow><mml:mi>χ</mml:mi><mml:mo>=</mml:mo><mml:mstyle displaystyle=\\\"false\\\"><mml:mfrac><mml:mrow><mml:mo stretchy=\\\"false\\\">∣</mml:mo><mml:mi>E</mml:mi><mml:mo stretchy=\\\"false\\\">∣</mml:mo></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi>E</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:mfrac></mml:mstyle></mml:mrow></mml:mfenced><mml:mo>≤</mml:mo><mml:mn>1</mml:mn></mml:math>\\n<inline-graphic xlink:href=\\\"ctpad2e88ieqn3.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> with <italic toggle=\\\"yes\\\">E</italic> representing the particle’s energy, <italic toggle=\\\"yes\\\">E</italic>\\n<sub>\\n<italic toggle=\\\"yes\\\">p</italic>\\n</sub> is the Planck’s energy, and <italic toggle=\\\"yes\\\">β</italic> is the rainbow parameter. We obtain the approximate analytical solutions for the scalar particles and conduct a thorough analysis of the obtained results. Afterwards, we study the quantum dynamics of quantum oscillator fields within this BML space-time, employing the Klein–Gordon oscillator. Here also, we choose the same sets of rainbow functions and obtain the approximate eigenvalue solution for the oscillator fields. Notably, we demonstrate that the relativistic approximate energy profiles of charge-free scalar particles and oscillator fields get influenced by the topology of the geometry and the cosmological constant. Furthermore, we show that the energy profiles of scalar particles receive modifications from the rainbow parameter and the quantum oscillator fields by both the rainbow parameter and the frequency of oscillation.\",\"PeriodicalId\":10641,\"journal\":{\"name\":\"Communications in Theoretical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Theoretical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1572-9494/ad2e88\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1572-9494/ad2e88","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Study of scalar particles through the Klein–Gordon equation under rainbow gravity effects in Bonnor–Melvin-Lambda space-time
In our investigation, we explore the quantum dynamics of charge-free scalar particles through the Klein–Gordon equation within the framework of rainbow gravity, considering the Bonnor–Melvin-Lambda (BML) space-time background. The BML solution is characterized by the magnetic field strength along the axis of the symmetry direction which is related to the cosmological constant Λ and the topological parameter α of the geometry. The behavior of charge-free scalar particles described by the Klein–Gordon equation is investigated, utilizing two sets of rainbow functions: (i) f(χ)=(eβχ−1)βχ, h(χ) = 1 and (ii) f(χ) = 1, h(χ)=1+βχ2. Here 0<χ=∣E∣Ep≤1 with E representing the particle’s energy, Ep is the Planck’s energy, and β is the rainbow parameter. We obtain the approximate analytical solutions for the scalar particles and conduct a thorough analysis of the obtained results. Afterwards, we study the quantum dynamics of quantum oscillator fields within this BML space-time, employing the Klein–Gordon oscillator. Here also, we choose the same sets of rainbow functions and obtain the approximate eigenvalue solution for the oscillator fields. Notably, we demonstrate that the relativistic approximate energy profiles of charge-free scalar particles and oscillator fields get influenced by the topology of the geometry and the cosmological constant. Furthermore, we show that the energy profiles of scalar particles receive modifications from the rainbow parameter and the quantum oscillator fields by both the rainbow parameter and the frequency of oscillation.
期刊介绍:
Communications in Theoretical Physics is devoted to reporting important new developments in the area of theoretical physics. Papers cover the fields of:
mathematical physics
quantum physics and quantum information
particle physics and quantum field theory
nuclear physics
gravitation theory, astrophysics and cosmology
atomic, molecular, optics (AMO) and plasma physics, chemical physics
statistical physics, soft matter and biophysics
condensed matter theory
others
Certain new interdisciplinary subjects are also incorporated.