用于血管内超声图像血管结构分割的分心感知分层学习技术

IF 5.4 2区 医学 Q1 ENGINEERING, BIOMEDICAL Computerized Medical Imaging and Graphics Pub Date : 2024-04-12 DOI:10.1016/j.compmedimag.2024.102381
Wenhao Zhong , Heye Zhang , Zhifan Gao , William Kongto Hau , Guang Yang , Xiujian Liu , Lin Xu
{"title":"用于血管内超声图像血管结构分割的分心感知分层学习技术","authors":"Wenhao Zhong ,&nbsp;Heye Zhang ,&nbsp;Zhifan Gao ,&nbsp;William Kongto Hau ,&nbsp;Guang Yang ,&nbsp;Xiujian Liu ,&nbsp;Lin Xu","doi":"10.1016/j.compmedimag.2024.102381","DOIUrl":null,"url":null,"abstract":"<div><p>Vascular structure segmentation in intravascular ultrasound (IVUS) images plays an important role in pre-procedural evaluation of percutaneous coronary intervention (PCI). However, vascular structure segmentation in IVUS images has the challenge of structure-dependent distractions. Structure-dependent distractions are categorized into two cases, structural intrinsic distractions and inter-structural distractions. Traditional machine learning methods often rely solely on low-level features, overlooking high-level features. This way limits the generalization of these methods. The existing semantic segmentation methods integrate low-level and high-level features to enhance generalization performance. But these methods also introduce additional interference, which is harmful to solving structural intrinsic distractions. Distraction cue methods attempt to address structural intrinsic distractions by removing interference from the features through a unique decoder. However, they tend to overlook the problem of inter-structural distractions. In this paper, we propose distraction-aware hierarchical learning (DHL) for vascular structure segmentation in IVUS images. Inspired by distraction cue methods for removing interference in a decoder, the DHL is designed as a hierarchical decoder that gradually removes structure-dependent distractions. The DHL includes global perception process, distraction perception process and structural perception process. The global perception process and distraction perception process remove structural intrinsic distractions then the structural perception process removes inter-structural distractions. In the global perception process, the DHL searches for the coarse structural region of the vascular structures on the slice of IVUS sequence. In the distraction perception process, the DHL progressively refines the coarse structural region of the vascular structures to remove structural distractions. In the structural perception process, the DHL detects regions of inter-structural distractions in fused structure features then separates them. Extensive experiments on 361 subjects show that the DHL is effective (e.g., the average Dice is greater than 0.95), and superior to ten state-of-the-art IVUS vascular structure segmentation methods.</p></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"115 ","pages":"Article 102381"},"PeriodicalIF":5.4000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distraction-aware hierarchical learning for vascular structure segmentation in intravascular ultrasound images\",\"authors\":\"Wenhao Zhong ,&nbsp;Heye Zhang ,&nbsp;Zhifan Gao ,&nbsp;William Kongto Hau ,&nbsp;Guang Yang ,&nbsp;Xiujian Liu ,&nbsp;Lin Xu\",\"doi\":\"10.1016/j.compmedimag.2024.102381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Vascular structure segmentation in intravascular ultrasound (IVUS) images plays an important role in pre-procedural evaluation of percutaneous coronary intervention (PCI). However, vascular structure segmentation in IVUS images has the challenge of structure-dependent distractions. Structure-dependent distractions are categorized into two cases, structural intrinsic distractions and inter-structural distractions. Traditional machine learning methods often rely solely on low-level features, overlooking high-level features. This way limits the generalization of these methods. The existing semantic segmentation methods integrate low-level and high-level features to enhance generalization performance. But these methods also introduce additional interference, which is harmful to solving structural intrinsic distractions. Distraction cue methods attempt to address structural intrinsic distractions by removing interference from the features through a unique decoder. However, they tend to overlook the problem of inter-structural distractions. In this paper, we propose distraction-aware hierarchical learning (DHL) for vascular structure segmentation in IVUS images. Inspired by distraction cue methods for removing interference in a decoder, the DHL is designed as a hierarchical decoder that gradually removes structure-dependent distractions. The DHL includes global perception process, distraction perception process and structural perception process. The global perception process and distraction perception process remove structural intrinsic distractions then the structural perception process removes inter-structural distractions. In the global perception process, the DHL searches for the coarse structural region of the vascular structures on the slice of IVUS sequence. In the distraction perception process, the DHL progressively refines the coarse structural region of the vascular structures to remove structural distractions. In the structural perception process, the DHL detects regions of inter-structural distractions in fused structure features then separates them. Extensive experiments on 361 subjects show that the DHL is effective (e.g., the average Dice is greater than 0.95), and superior to ten state-of-the-art IVUS vascular structure segmentation methods.</p></div>\",\"PeriodicalId\":50631,\"journal\":{\"name\":\"Computerized Medical Imaging and Graphics\",\"volume\":\"115 \",\"pages\":\"Article 102381\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computerized Medical Imaging and Graphics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0895611124000582\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611124000582","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

血管内超声(IVUS)图像中的血管结构分割在经皮冠状动脉介入治疗(PCI)的术前评估中发挥着重要作用。然而,IVUS 图像中的血管结构分割面临着结构依赖性干扰的挑战。结构相关干扰分为两种情况:结构内在干扰和结构间干扰。传统的机器学习方法往往只依赖于低层次特征,而忽略了高层次特征。这就限制了这些方法的通用性。现有的语义分割方法整合了低级和高级特征,以提高泛化性能。但这些方法也引入了额外的干扰,不利于解决结构性内在分心问题。分心线索方法试图通过独特的解码器消除特征干扰,从而解决结构性内在分心问题。然而,这些方法往往忽略了结构间干扰的问题。在本文中,我们提出了针对 IVUS 图像中血管结构分割的分心感知分层学习(DHL)。受在解码器中消除干扰的分心线索方法的启发,DHL 被设计成一种分层解码器,可逐步消除与结构相关的干扰。DHL 包括全局感知过程、分心感知过程和结构感知过程。全局感知过程和分心感知过程消除结构内在干扰,然后结构感知过程消除结构间干扰。在全局感知过程中,DHL 在 IVUS 序列切片上搜索血管结构的粗结构区域。在分心感知过程中,DHL 逐步细化血管结构的粗结构区域,以去除结构分心。在结构感知过程中,DHL 会检测融合结构特征中的结构间干扰区域,然后将其分离。在 361 名受试者身上进行的大量实验表明,DHL 是有效的(例如,平均 Dice 大于 0.95),并且优于十种最先进的 IVUS 血管结构分割方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Distraction-aware hierarchical learning for vascular structure segmentation in intravascular ultrasound images

Vascular structure segmentation in intravascular ultrasound (IVUS) images plays an important role in pre-procedural evaluation of percutaneous coronary intervention (PCI). However, vascular structure segmentation in IVUS images has the challenge of structure-dependent distractions. Structure-dependent distractions are categorized into two cases, structural intrinsic distractions and inter-structural distractions. Traditional machine learning methods often rely solely on low-level features, overlooking high-level features. This way limits the generalization of these methods. The existing semantic segmentation methods integrate low-level and high-level features to enhance generalization performance. But these methods also introduce additional interference, which is harmful to solving structural intrinsic distractions. Distraction cue methods attempt to address structural intrinsic distractions by removing interference from the features through a unique decoder. However, they tend to overlook the problem of inter-structural distractions. In this paper, we propose distraction-aware hierarchical learning (DHL) for vascular structure segmentation in IVUS images. Inspired by distraction cue methods for removing interference in a decoder, the DHL is designed as a hierarchical decoder that gradually removes structure-dependent distractions. The DHL includes global perception process, distraction perception process and structural perception process. The global perception process and distraction perception process remove structural intrinsic distractions then the structural perception process removes inter-structural distractions. In the global perception process, the DHL searches for the coarse structural region of the vascular structures on the slice of IVUS sequence. In the distraction perception process, the DHL progressively refines the coarse structural region of the vascular structures to remove structural distractions. In the structural perception process, the DHL detects regions of inter-structural distractions in fused structure features then separates them. Extensive experiments on 361 subjects show that the DHL is effective (e.g., the average Dice is greater than 0.95), and superior to ten state-of-the-art IVUS vascular structure segmentation methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.70
自引率
3.50%
发文量
71
审稿时长
26 days
期刊介绍: The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.
期刊最新文献
Single color digital H&E staining with In-and-Out Net. Cervical OCT image classification using contrastive masked autoencoders with Swin Transformer. Circumpapillary OCT-based multi-sector analysis of retinal layer thickness in patients with glaucoma and high myopia. Dual attention model with reinforcement learning for classification of histology whole-slide images. CIS-UNet: Multi-class segmentation of the aorta in computed tomography angiography via context-aware shifted window self-attention.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1