{"title":"ASIVA - 恒星变量观测和计算分析平台","authors":"Parvej Reja Saleh , Tanveer Singh , Debasish Hazarika , Surabhi Rajkumari , Saurabh Rajkumar , Pritam Das , Padmakar Singh Parihar , Eeshankur Saikia","doi":"10.1016/j.newast.2024.102232","DOIUrl":null,"url":null,"abstract":"<div><p>The astronomical data analysis consists of two crucial process; data reduction of the captured images and data analysis of the derived magnitudes. We present the platform ASIVA, a data analysis platform which comes along with a data reduction pipeline. The data reduction pipeline gives flexibility to analyse the FITS images and also perform image alignment for detecting the correct image coordinates for required objects. It can be custom scheduled with cron jobs so that it picks the latest data and appends the results accordingly. The data analysis platform allows user to effectively analyse the ensemble data and perform accurate data processing and grouping with ease. It is integrated with a custom algorithm to detect the variable stars from an ensemble with its relative standard deviations. The statistical, spectral and non-linear dynamics features can be extracted from time series data which can be eventually used for in-depth analysis. To validate the capability, we have analysed 15 nights of Orion Nebula Cluster field in I filter which had 1585 images. ASIVA reduces manual effort to a great extent thus saves analysis time and excludes human errors.</p></div>","PeriodicalId":54727,"journal":{"name":"New Astronomy","volume":"111 ","pages":"Article 102232"},"PeriodicalIF":1.9000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ASIVA – Platform for observational and computational analysis of stellar variables\",\"authors\":\"Parvej Reja Saleh , Tanveer Singh , Debasish Hazarika , Surabhi Rajkumari , Saurabh Rajkumar , Pritam Das , Padmakar Singh Parihar , Eeshankur Saikia\",\"doi\":\"10.1016/j.newast.2024.102232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The astronomical data analysis consists of two crucial process; data reduction of the captured images and data analysis of the derived magnitudes. We present the platform ASIVA, a data analysis platform which comes along with a data reduction pipeline. The data reduction pipeline gives flexibility to analyse the FITS images and also perform image alignment for detecting the correct image coordinates for required objects. It can be custom scheduled with cron jobs so that it picks the latest data and appends the results accordingly. The data analysis platform allows user to effectively analyse the ensemble data and perform accurate data processing and grouping with ease. It is integrated with a custom algorithm to detect the variable stars from an ensemble with its relative standard deviations. The statistical, spectral and non-linear dynamics features can be extracted from time series data which can be eventually used for in-depth analysis. To validate the capability, we have analysed 15 nights of Orion Nebula Cluster field in I filter which had 1585 images. ASIVA reduces manual effort to a great extent thus saves analysis time and excludes human errors.</p></div>\",\"PeriodicalId\":54727,\"journal\":{\"name\":\"New Astronomy\",\"volume\":\"111 \",\"pages\":\"Article 102232\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1384107624000460\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Astronomy","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1384107624000460","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
ASIVA – Platform for observational and computational analysis of stellar variables
The astronomical data analysis consists of two crucial process; data reduction of the captured images and data analysis of the derived magnitudes. We present the platform ASIVA, a data analysis platform which comes along with a data reduction pipeline. The data reduction pipeline gives flexibility to analyse the FITS images and also perform image alignment for detecting the correct image coordinates for required objects. It can be custom scheduled with cron jobs so that it picks the latest data and appends the results accordingly. The data analysis platform allows user to effectively analyse the ensemble data and perform accurate data processing and grouping with ease. It is integrated with a custom algorithm to detect the variable stars from an ensemble with its relative standard deviations. The statistical, spectral and non-linear dynamics features can be extracted from time series data which can be eventually used for in-depth analysis. To validate the capability, we have analysed 15 nights of Orion Nebula Cluster field in I filter which had 1585 images. ASIVA reduces manual effort to a great extent thus saves analysis time and excludes human errors.
期刊介绍:
New Astronomy publishes articles in all fields of astronomy and astrophysics, with a particular focus on computational astronomy: mathematical and astronomy techniques and methodology, simulations, modelling and numerical results and computational techniques in instrumentation.
New Astronomy includes full length research articles and review articles. The journal covers solar, stellar, galactic and extragalactic astronomy and astrophysics. It reports on original research in all wavelength bands, ranging from radio to gamma-ray.