{"title":"利用管道模型并行性优化 DNN 训练,提高嵌入式系统性能","authors":"Md Al Maruf , Akramul Azim , Nitin Auluck , Mansi Sahi","doi":"10.1016/j.jpdc.2024.104890","DOIUrl":null,"url":null,"abstract":"<div><p>Deep Neural Networks (DNNs) have gained widespread popularity in different domain applications due to their dominant performance. Despite the prevalence of massively parallel multi-core processor architectures, adopting large DNN models in embedded systems remains challenging, as most embedded applications are designed with single-core processors in mind. This limits DNN adoption in embedded systems due to inefficient leveraging of model parallelization and workload partitioning. Prior solutions attempt to address these challenges using data and model parallelism. However, they lack in finding optimal DNN model partitions and distributing them efficiently to achieve improved performance.</p><p>This paper proposes a DNN model parallelism framework to accelerate model training by finding the optimal number of model partitions and resource provisions. The proposed framework combines data and model parallelism techniques to optimize the parallel processing of DNNs for embedded applications. In addition, it implements the pipeline execution of the partitioned models and integrates a task controller to manage the computing resources. The experimental results for image object detection demonstrate the applicability of our proposed framework in estimating the latest execution time and reducing overall model training time by almost 44.87% compared to the baseline AlexNet convolutional neural network (CNN) model.</p></div>","PeriodicalId":54775,"journal":{"name":"Journal of Parallel and Distributed Computing","volume":"190 ","pages":"Article 104890"},"PeriodicalIF":3.4000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0743731524000546/pdfft?md5=d1af7342dc4b7d20a8dac857da5813c8&pid=1-s2.0-S0743731524000546-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Optimizing DNN training with pipeline model parallelism for enhanced performance in embedded systems\",\"authors\":\"Md Al Maruf , Akramul Azim , Nitin Auluck , Mansi Sahi\",\"doi\":\"10.1016/j.jpdc.2024.104890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Deep Neural Networks (DNNs) have gained widespread popularity in different domain applications due to their dominant performance. Despite the prevalence of massively parallel multi-core processor architectures, adopting large DNN models in embedded systems remains challenging, as most embedded applications are designed with single-core processors in mind. This limits DNN adoption in embedded systems due to inefficient leveraging of model parallelization and workload partitioning. Prior solutions attempt to address these challenges using data and model parallelism. However, they lack in finding optimal DNN model partitions and distributing them efficiently to achieve improved performance.</p><p>This paper proposes a DNN model parallelism framework to accelerate model training by finding the optimal number of model partitions and resource provisions. The proposed framework combines data and model parallelism techniques to optimize the parallel processing of DNNs for embedded applications. In addition, it implements the pipeline execution of the partitioned models and integrates a task controller to manage the computing resources. The experimental results for image object detection demonstrate the applicability of our proposed framework in estimating the latest execution time and reducing overall model training time by almost 44.87% compared to the baseline AlexNet convolutional neural network (CNN) model.</p></div>\",\"PeriodicalId\":54775,\"journal\":{\"name\":\"Journal of Parallel and Distributed Computing\",\"volume\":\"190 \",\"pages\":\"Article 104890\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0743731524000546/pdfft?md5=d1af7342dc4b7d20a8dac857da5813c8&pid=1-s2.0-S0743731524000546-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Parallel and Distributed Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0743731524000546\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Parallel and Distributed Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0743731524000546","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Optimizing DNN training with pipeline model parallelism for enhanced performance in embedded systems
Deep Neural Networks (DNNs) have gained widespread popularity in different domain applications due to their dominant performance. Despite the prevalence of massively parallel multi-core processor architectures, adopting large DNN models in embedded systems remains challenging, as most embedded applications are designed with single-core processors in mind. This limits DNN adoption in embedded systems due to inefficient leveraging of model parallelization and workload partitioning. Prior solutions attempt to address these challenges using data and model parallelism. However, they lack in finding optimal DNN model partitions and distributing them efficiently to achieve improved performance.
This paper proposes a DNN model parallelism framework to accelerate model training by finding the optimal number of model partitions and resource provisions. The proposed framework combines data and model parallelism techniques to optimize the parallel processing of DNNs for embedded applications. In addition, it implements the pipeline execution of the partitioned models and integrates a task controller to manage the computing resources. The experimental results for image object detection demonstrate the applicability of our proposed framework in estimating the latest execution time and reducing overall model training time by almost 44.87% compared to the baseline AlexNet convolutional neural network (CNN) model.
期刊介绍:
This international journal is directed to researchers, engineers, educators, managers, programmers, and users of computers who have particular interests in parallel processing and/or distributed computing.
The Journal of Parallel and Distributed Computing publishes original research papers and timely review articles on the theory, design, evaluation, and use of parallel and/or distributed computing systems. The journal also features special issues on these topics; again covering the full range from the design to the use of our targeted systems.