{"title":"口服 5-HT3 受体拮抗剂昂丹司琼对反复应激诱导小鼠焦虑相关行为和结肠过度收缩的影响","authors":"Affan Waemong , Sarunnuch Sattayachiti , Dania Cheaha , Nipaporn Konthapakdee","doi":"10.1016/j.autneu.2024.103178","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>Chronic psychological stress develops and exacerbates irritable bowel syndrome (IBS). 5-hydroxytryptamine (5-HT) via activation of intestinal 5-HT<sub>3</sub> receptors involves impairment of intestinal functions. This study aimed to investigate the effects of ondansetron, a 5-HT<sub>3</sub> receptor antagonist, on locomotor activity, anxiety-related behaviors, and colonic functions in repeated water avoidance stress.</p></div><div><h3>Materials and methods</h3><p>Food intake and fecal pellet output (FPO) of sham stress (SS), water avoidance stress (WS), and water avoidance stress with oral administration of ondansetron (1 mg/kg BW) (WA) groups were monitored along the water avoidance stress protocol for 10 consecutive days. On day 11, locomotor activity and anxiety-related behaviors were determined using an open field test. Contractile properties of colonic tissues in response to KCl and a cumulative dose of carbachol (CCh) were determined using in vitro organ bath technique.</p></div><div><h3>Results</h3><p>FPO was significantly increased in the WS group after 7 days of water avoidance stress, which was reversed in WA group. WS group decreased unsupported rearing behavior compared to WS group, which was not altered in the WA group. The colon of the WS group had a higher tonic contraction in response to CCh than the SS and WA groups, which was reversed with ondansetron pre-incubation.</p></div><div><h3>Conclusions</h3><p>Oral administration of ondansetron prevented increased FPO but did not affect anxiety-related behavior in repeated stress model. Colonic hypercontractility in the stressed mice was related to increased responses to cholinergic-induced contractions, which involved 5-HT<sub>3</sub> receptors. Our findings suggest the modulatory roles of 5-HT<sub>3</sub> receptors to mediate stress-induced colonic dysfunction.</p></div>","PeriodicalId":55410,"journal":{"name":"Autonomic Neuroscience-Basic & Clinical","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of oral administration of ondansetron, a 5-HT3 receptor antagonist, on anxiety-related behaviors and colonic hypercontractility in repeated stress-induced mice\",\"authors\":\"Affan Waemong , Sarunnuch Sattayachiti , Dania Cheaha , Nipaporn Konthapakdee\",\"doi\":\"10.1016/j.autneu.2024.103178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose</h3><p>Chronic psychological stress develops and exacerbates irritable bowel syndrome (IBS). 5-hydroxytryptamine (5-HT) via activation of intestinal 5-HT<sub>3</sub> receptors involves impairment of intestinal functions. This study aimed to investigate the effects of ondansetron, a 5-HT<sub>3</sub> receptor antagonist, on locomotor activity, anxiety-related behaviors, and colonic functions in repeated water avoidance stress.</p></div><div><h3>Materials and methods</h3><p>Food intake and fecal pellet output (FPO) of sham stress (SS), water avoidance stress (WS), and water avoidance stress with oral administration of ondansetron (1 mg/kg BW) (WA) groups were monitored along the water avoidance stress protocol for 10 consecutive days. On day 11, locomotor activity and anxiety-related behaviors were determined using an open field test. Contractile properties of colonic tissues in response to KCl and a cumulative dose of carbachol (CCh) were determined using in vitro organ bath technique.</p></div><div><h3>Results</h3><p>FPO was significantly increased in the WS group after 7 days of water avoidance stress, which was reversed in WA group. WS group decreased unsupported rearing behavior compared to WS group, which was not altered in the WA group. The colon of the WS group had a higher tonic contraction in response to CCh than the SS and WA groups, which was reversed with ondansetron pre-incubation.</p></div><div><h3>Conclusions</h3><p>Oral administration of ondansetron prevented increased FPO but did not affect anxiety-related behavior in repeated stress model. Colonic hypercontractility in the stressed mice was related to increased responses to cholinergic-induced contractions, which involved 5-HT<sub>3</sub> receptors. Our findings suggest the modulatory roles of 5-HT<sub>3</sub> receptors to mediate stress-induced colonic dysfunction.</p></div>\",\"PeriodicalId\":55410,\"journal\":{\"name\":\"Autonomic Neuroscience-Basic & Clinical\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autonomic Neuroscience-Basic & Clinical\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1566070224000328\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomic Neuroscience-Basic & Clinical","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566070224000328","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Effects of oral administration of ondansetron, a 5-HT3 receptor antagonist, on anxiety-related behaviors and colonic hypercontractility in repeated stress-induced mice
Purpose
Chronic psychological stress develops and exacerbates irritable bowel syndrome (IBS). 5-hydroxytryptamine (5-HT) via activation of intestinal 5-HT3 receptors involves impairment of intestinal functions. This study aimed to investigate the effects of ondansetron, a 5-HT3 receptor antagonist, on locomotor activity, anxiety-related behaviors, and colonic functions in repeated water avoidance stress.
Materials and methods
Food intake and fecal pellet output (FPO) of sham stress (SS), water avoidance stress (WS), and water avoidance stress with oral administration of ondansetron (1 mg/kg BW) (WA) groups were monitored along the water avoidance stress protocol for 10 consecutive days. On day 11, locomotor activity and anxiety-related behaviors were determined using an open field test. Contractile properties of colonic tissues in response to KCl and a cumulative dose of carbachol (CCh) were determined using in vitro organ bath technique.
Results
FPO was significantly increased in the WS group after 7 days of water avoidance stress, which was reversed in WA group. WS group decreased unsupported rearing behavior compared to WS group, which was not altered in the WA group. The colon of the WS group had a higher tonic contraction in response to CCh than the SS and WA groups, which was reversed with ondansetron pre-incubation.
Conclusions
Oral administration of ondansetron prevented increased FPO but did not affect anxiety-related behavior in repeated stress model. Colonic hypercontractility in the stressed mice was related to increased responses to cholinergic-induced contractions, which involved 5-HT3 receptors. Our findings suggest the modulatory roles of 5-HT3 receptors to mediate stress-induced colonic dysfunction.
期刊介绍:
This is an international journal with broad coverage of all aspects of the autonomic nervous system in man and animals. The main areas of interest include the innervation of blood vessels and viscera, autonomic ganglia, efferent and afferent autonomic pathways, and autonomic nuclei and pathways in the central nervous system.
The Editors will consider papers that deal with any aspect of the autonomic nervous system, including structure, physiology, pharmacology, biochemistry, development, evolution, ageing, behavioural aspects, integrative role and influence on emotional and physical states of the body. Interdisciplinary studies will be encouraged. Studies dealing with human pathology will be also welcome.