{"title":"苯并[a]芘暴露会导致外激素转换,从而以 AHR 依赖性方式减少表面 CD5 的表达","authors":"Smita Kumari , Bharat Singh , Amit Kumar Kureel , Sheetal Saini , Satya Prakash , Aditi Chauhan , Prabin Kumar , Kulwant Singh , Ambak Kumar Rai","doi":"10.1016/j.imlet.2024.106858","DOIUrl":null,"url":null,"abstract":"<div><p>The function of CD5 protein in T cells is well documented, but regulation of its surface-level expression has yet to be fully understood. However, variation in its surface expression is associated with various immunopathological conditions and haematological malignancies. Briefly, expression of an alternate exon E1B of a human endogenous retroviruses (HERV) origin directly downregulates the conventional transcript variant (E1A), as its expression leads to the retention of the resultant protein at the intracellular level (cCD5). A separate promoter governs the expression of E1B and may be influenced by different transcription factors. Hence, we performed <em>in silico</em> transcription factor binding site (TFBS) analysis of the 3 kb upstream region from TSS of exon E1B and found five putative DREs (Dioxin Response elements) with good similarity scores. Further, we observed the upregulation in E1B expression after the exposure of BaP (a dioxin) and the reduction of E1A expression and their respective protein, i.e. sCD5 and cCD5. The binding of AHR at the predicted DRE sites was confirmed by ChIP qPCR and AHR specific inhibitor and gene silencing studies suggested the involvement of AHR in exonal switch. This study indicates that the polycyclic aromatic hydrocarbon decreases the sCD5 expression by upregulating alternative exon expression, which may adversely affect the overall T cell functions.</p></div>","PeriodicalId":13413,"journal":{"name":"Immunology letters","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Benzo[a]pyrene exposure causes exonal switch resulting in reduced surface CD5 expression in an AHR-dependent manner\",\"authors\":\"Smita Kumari , Bharat Singh , Amit Kumar Kureel , Sheetal Saini , Satya Prakash , Aditi Chauhan , Prabin Kumar , Kulwant Singh , Ambak Kumar Rai\",\"doi\":\"10.1016/j.imlet.2024.106858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The function of CD5 protein in T cells is well documented, but regulation of its surface-level expression has yet to be fully understood. However, variation in its surface expression is associated with various immunopathological conditions and haematological malignancies. Briefly, expression of an alternate exon E1B of a human endogenous retroviruses (HERV) origin directly downregulates the conventional transcript variant (E1A), as its expression leads to the retention of the resultant protein at the intracellular level (cCD5). A separate promoter governs the expression of E1B and may be influenced by different transcription factors. Hence, we performed <em>in silico</em> transcription factor binding site (TFBS) analysis of the 3 kb upstream region from TSS of exon E1B and found five putative DREs (Dioxin Response elements) with good similarity scores. Further, we observed the upregulation in E1B expression after the exposure of BaP (a dioxin) and the reduction of E1A expression and their respective protein, i.e. sCD5 and cCD5. The binding of AHR at the predicted DRE sites was confirmed by ChIP qPCR and AHR specific inhibitor and gene silencing studies suggested the involvement of AHR in exonal switch. This study indicates that the polycyclic aromatic hydrocarbon decreases the sCD5 expression by upregulating alternative exon expression, which may adversely affect the overall T cell functions.</p></div>\",\"PeriodicalId\":13413,\"journal\":{\"name\":\"Immunology letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Immunology letters\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165247824000324\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunology letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165247824000324","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Benzo[a]pyrene exposure causes exonal switch resulting in reduced surface CD5 expression in an AHR-dependent manner
The function of CD5 protein in T cells is well documented, but regulation of its surface-level expression has yet to be fully understood. However, variation in its surface expression is associated with various immunopathological conditions and haematological malignancies. Briefly, expression of an alternate exon E1B of a human endogenous retroviruses (HERV) origin directly downregulates the conventional transcript variant (E1A), as its expression leads to the retention of the resultant protein at the intracellular level (cCD5). A separate promoter governs the expression of E1B and may be influenced by different transcription factors. Hence, we performed in silico transcription factor binding site (TFBS) analysis of the 3 kb upstream region from TSS of exon E1B and found five putative DREs (Dioxin Response elements) with good similarity scores. Further, we observed the upregulation in E1B expression after the exposure of BaP (a dioxin) and the reduction of E1A expression and their respective protein, i.e. sCD5 and cCD5. The binding of AHR at the predicted DRE sites was confirmed by ChIP qPCR and AHR specific inhibitor and gene silencing studies suggested the involvement of AHR in exonal switch. This study indicates that the polycyclic aromatic hydrocarbon decreases the sCD5 expression by upregulating alternative exon expression, which may adversely affect the overall T cell functions.
期刊介绍:
Immunology Letters provides a vehicle for the speedy publication of experimental papers, (mini)Reviews and Letters to the Editor addressing all aspects of molecular and cellular immunology. The essential criteria for publication will be clarity, experimental soundness and novelty. Results contradictory to current accepted thinking or ideas divergent from actual dogmas will be considered for publication provided that they are based on solid experimental findings.
Preference will be given to papers of immediate importance to other investigators, either by their experimental data, new ideas or new methodology. Scientific correspondence to the Editor-in-Chief related to the published papers may also be accepted provided that they are short and scientifically relevant to the papers mentioned, in order to provide a continuing forum for discussion.