Gunnar Quante , Steffen Voß , Nils Bullerdiek , Christiane Voigt , Martin Kaltschmitt
{"title":"基于化石燃料的航空煤油的水处理--技术选择和减轻气候影响的潜力","authors":"Gunnar Quante , Steffen Voß , Nils Bullerdiek , Christiane Voigt , Martin Kaltschmitt","doi":"10.1016/j.aeaoa.2024.100259","DOIUrl":null,"url":null,"abstract":"<div><p>Aviation contributes about 4 % of global anthropogenic climate forcing primarily by contrails, CO<sub>2</sub> and NO<sub>x</sub> emissions. Renewably sourced aviation kerosene can help to reduce the climate impact from CO<sub>2</sub> and from contrails, but so far, its production capacities are very small. Hence, the climate impact of using fossil fuel-based kerosene with a hydrogen content increased by hydroprocessing as short term mitigation measure is studied here. Therefore, the change in net energy forcing (ΔEF<sub>net</sub>) in 2019 is calculated as the sum of the change in contrail energy forcing (ΔEF<sub>contrail</sub>) and additional CO<sub>2</sub> emissions (ΔEF<sub>hydroprocessing</sub>) from aviation kerosene hydroprocessing (ΔEF<sub>net</sub> = ΔEF<sub>contrail</sub> + ΔEF<sub>hydroprocessing</sub>). The results show that hydroprocessed aviation kerosene can reduce the net energy forcing EF<sub>net</sub> by about 33 % with ΔEF<sub>hydroprocessing</sub> penalty of 5 %-points. Increasing the hydroprocessing severity increases the relative climate benefit, which is only slightly affected by the emissions factor for hydroprocessing or the choice of the time horizon. Data limitations about fuel composition and its effect on contrails and climate cause considerable uncertainties and the fuel's compliance with specification standards needs consideration. This study on the climate effect of hydroprocessed fossil kerosene can help to assess near-term measures to reduce the climate impact from aviation.</p></div>","PeriodicalId":37150,"journal":{"name":"Atmospheric Environment: X","volume":"22 ","pages":"Article 100259"},"PeriodicalIF":3.8000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590162124000261/pdfft?md5=373b2138d64d9499a4f0913773ac6db8&pid=1-s2.0-S2590162124000261-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Hydroprocessing of fossil fuel-based aviation kerosene – Technology options and climate impact mitigation potentials\",\"authors\":\"Gunnar Quante , Steffen Voß , Nils Bullerdiek , Christiane Voigt , Martin Kaltschmitt\",\"doi\":\"10.1016/j.aeaoa.2024.100259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Aviation contributes about 4 % of global anthropogenic climate forcing primarily by contrails, CO<sub>2</sub> and NO<sub>x</sub> emissions. Renewably sourced aviation kerosene can help to reduce the climate impact from CO<sub>2</sub> and from contrails, but so far, its production capacities are very small. Hence, the climate impact of using fossil fuel-based kerosene with a hydrogen content increased by hydroprocessing as short term mitigation measure is studied here. Therefore, the change in net energy forcing (ΔEF<sub>net</sub>) in 2019 is calculated as the sum of the change in contrail energy forcing (ΔEF<sub>contrail</sub>) and additional CO<sub>2</sub> emissions (ΔEF<sub>hydroprocessing</sub>) from aviation kerosene hydroprocessing (ΔEF<sub>net</sub> = ΔEF<sub>contrail</sub> + ΔEF<sub>hydroprocessing</sub>). The results show that hydroprocessed aviation kerosene can reduce the net energy forcing EF<sub>net</sub> by about 33 % with ΔEF<sub>hydroprocessing</sub> penalty of 5 %-points. Increasing the hydroprocessing severity increases the relative climate benefit, which is only slightly affected by the emissions factor for hydroprocessing or the choice of the time horizon. Data limitations about fuel composition and its effect on contrails and climate cause considerable uncertainties and the fuel's compliance with specification standards needs consideration. This study on the climate effect of hydroprocessed fossil kerosene can help to assess near-term measures to reduce the climate impact from aviation.</p></div>\",\"PeriodicalId\":37150,\"journal\":{\"name\":\"Atmospheric Environment: X\",\"volume\":\"22 \",\"pages\":\"Article 100259\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590162124000261/pdfft?md5=373b2138d64d9499a4f0913773ac6db8&pid=1-s2.0-S2590162124000261-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Environment: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590162124000261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Environment: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590162124000261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Hydroprocessing of fossil fuel-based aviation kerosene – Technology options and climate impact mitigation potentials
Aviation contributes about 4 % of global anthropogenic climate forcing primarily by contrails, CO2 and NOx emissions. Renewably sourced aviation kerosene can help to reduce the climate impact from CO2 and from contrails, but so far, its production capacities are very small. Hence, the climate impact of using fossil fuel-based kerosene with a hydrogen content increased by hydroprocessing as short term mitigation measure is studied here. Therefore, the change in net energy forcing (ΔEFnet) in 2019 is calculated as the sum of the change in contrail energy forcing (ΔEFcontrail) and additional CO2 emissions (ΔEFhydroprocessing) from aviation kerosene hydroprocessing (ΔEFnet = ΔEFcontrail + ΔEFhydroprocessing). The results show that hydroprocessed aviation kerosene can reduce the net energy forcing EFnet by about 33 % with ΔEFhydroprocessing penalty of 5 %-points. Increasing the hydroprocessing severity increases the relative climate benefit, which is only slightly affected by the emissions factor for hydroprocessing or the choice of the time horizon. Data limitations about fuel composition and its effect on contrails and climate cause considerable uncertainties and the fuel's compliance with specification standards needs consideration. This study on the climate effect of hydroprocessed fossil kerosene can help to assess near-term measures to reduce the climate impact from aviation.