Tensorlab+:张量研究可重复性案例研究

IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computing in Science & Engineering Pub Date : 2023-12-11 DOI:10.1109/mcse.2023.3340434
Stijn Hendrikx, Raphaël Widdershoven, Nico Vervliet, Lieven De Lathauwer
{"title":"Tensorlab+:张量研究可重复性案例研究","authors":"Stijn Hendrikx, Raphaël Widdershoven, Nico Vervliet, Lieven De Lathauwer","doi":"10.1109/mcse.2023.3340434","DOIUrl":null,"url":null,"abstract":"Tensor methods emerge as an important class of basic techniques, generalizing matrix methods to multiway data and models. We have recently released Tensorlab+, which is a downloadable archive of code and data that allows peers to reproduce the experiments reported in our publications on tensor decompositions and applications. We briefly discuss the basic tensor tools and give an introduction to the contents of Tensorlab+. We elaborate on the steps that were taken to ensure the reproducibility of the experiments and the quality of the code.","PeriodicalId":10553,"journal":{"name":"Computing in Science & Engineering","volume":"17 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tensorlab+: A Case Study on Reproducibility in Tensor Research\",\"authors\":\"Stijn Hendrikx, Raphaël Widdershoven, Nico Vervliet, Lieven De Lathauwer\",\"doi\":\"10.1109/mcse.2023.3340434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tensor methods emerge as an important class of basic techniques, generalizing matrix methods to multiway data and models. We have recently released Tensorlab+, which is a downloadable archive of code and data that allows peers to reproduce the experiments reported in our publications on tensor decompositions and applications. We briefly discuss the basic tensor tools and give an introduction to the contents of Tensorlab+. We elaborate on the steps that were taken to ensure the reproducibility of the experiments and the quality of the code.\",\"PeriodicalId\":10553,\"journal\":{\"name\":\"Computing in Science & Engineering\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computing in Science & Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/mcse.2023.3340434\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing in Science & Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/mcse.2023.3340434","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

张量方法是一类重要的基本技术,它将矩阵方法推广到多向数据和模型中。我们最近发布了 Tensorlab+,这是一个可下载的代码和数据档案库,允许同行重现我们在张量分解和应用方面的出版物中报道的实验。我们将简要讨论基本的张量工具,并介绍 Tensorlab+ 的内容。我们将详细介绍为确保实验的可重复性和代码质量所采取的步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tensorlab+: A Case Study on Reproducibility in Tensor Research
Tensor methods emerge as an important class of basic techniques, generalizing matrix methods to multiway data and models. We have recently released Tensorlab+, which is a downloadable archive of code and data that allows peers to reproduce the experiments reported in our publications on tensor decompositions and applications. We briefly discuss the basic tensor tools and give an introduction to the contents of Tensorlab+. We elaborate on the steps that were taken to ensure the reproducibility of the experiments and the quality of the code.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computing in Science & Engineering
Computing in Science & Engineering 工程技术-计算机:跨学科应用
CiteScore
4.20
自引率
0.00%
发文量
77
审稿时长
6-12 weeks
期刊介绍: Physics, medicine, astronomy -- these and other hard sciences share a common need for efficient algorithms, system software, and computer architecture to address large computational problems. And yet, useful advances in computational techniques that could benefit many researchers are rarely shared. To meet that need, Computing in Science & Engineering presents scientific and computational contributions in a clear and accessible format. The computational and data-centric problems faced by scientists and engineers transcend disciplines. There is a need to share knowledge of algorithms, software, and architectures, and to transmit lessons-learned to a broad scientific audience. CiSE is a cross-disciplinary, international publication that meets this need by presenting contributions of high interest and educational value from a variety of fields, including—but not limited to—physics, biology, chemistry, and astronomy. CiSE emphasizes innovative applications in advanced computing, simulation, and analytics, among other cutting-edge techniques. CiSE publishes peer-reviewed research articles, and also runs departments spanning news and analyses, topical reviews, tutorials, case studies, and more.
期刊最新文献
Bridging the gender gap in computing: Insights from Latin America with a focus on Brazil IEEE Transactions on Sustainable Computing Thoughts on Learning Human and Programming Languages AI’s 10 to Watch: Call for Nominations Computing Edge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1