Ruaa Shallal Abbas Anooz, Jafar Pourrostam, Mohanad Al-Ibadi
{"title":"使用自适应滤波技术的二维和三维波束与信道跟踪性能评估","authors":"Ruaa Shallal Abbas Anooz, Jafar Pourrostam, Mohanad Al-Ibadi","doi":"10.1007/s40998-024-00723-z","DOIUrl":null,"url":null,"abstract":"<p>This work studies the effect of array dimensions on the tracking performance of a single line-of-sight (LoS) path channel in a millimeter-wave (mmWave) multiple-input multiple-output (MIMO) communications system utilizing adaptive filters. We evaluate the performance of the least mean squares filter and compare it with a reference extended Kalman filter in full-dimensional (FD) MIMO channels. Two-dimensional (2D) arrays are deployed to control the elevation and azimuth planes in different tracking scenarios. This paper assumes pedestrian communication between a person in a hall and a station. The state vector in our model comprises the angular channel parameters (the angles of arrival and departure) and the channel path gain. We use the mean squared error (MSE) to evaluate our results. The tracking results of the FD channel parameters are also compared to those of the 2D channel parameters to emphasize the role of the 2D array deployments compared to one-dimensional (1D) arrays to track in an mmWave communications system. Our results confirm that the array configuration is more important than the array size in beam tracking at the mmWave band.</p>","PeriodicalId":49064,"journal":{"name":"Iranian Journal of Science and Technology-Transactions of Electrical Engineering","volume":"116 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Evaluation of 2D and 3D Beam and Channel Tracking Using Adaptive Filtering Techniques\",\"authors\":\"Ruaa Shallal Abbas Anooz, Jafar Pourrostam, Mohanad Al-Ibadi\",\"doi\":\"10.1007/s40998-024-00723-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This work studies the effect of array dimensions on the tracking performance of a single line-of-sight (LoS) path channel in a millimeter-wave (mmWave) multiple-input multiple-output (MIMO) communications system utilizing adaptive filters. We evaluate the performance of the least mean squares filter and compare it with a reference extended Kalman filter in full-dimensional (FD) MIMO channels. Two-dimensional (2D) arrays are deployed to control the elevation and azimuth planes in different tracking scenarios. This paper assumes pedestrian communication between a person in a hall and a station. The state vector in our model comprises the angular channel parameters (the angles of arrival and departure) and the channel path gain. We use the mean squared error (MSE) to evaluate our results. The tracking results of the FD channel parameters are also compared to those of the 2D channel parameters to emphasize the role of the 2D array deployments compared to one-dimensional (1D) arrays to track in an mmWave communications system. Our results confirm that the array configuration is more important than the array size in beam tracking at the mmWave band.</p>\",\"PeriodicalId\":49064,\"journal\":{\"name\":\"Iranian Journal of Science and Technology-Transactions of Electrical Engineering\",\"volume\":\"116 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Science and Technology-Transactions of Electrical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40998-024-00723-z\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology-Transactions of Electrical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40998-024-00723-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Performance Evaluation of 2D and 3D Beam and Channel Tracking Using Adaptive Filtering Techniques
This work studies the effect of array dimensions on the tracking performance of a single line-of-sight (LoS) path channel in a millimeter-wave (mmWave) multiple-input multiple-output (MIMO) communications system utilizing adaptive filters. We evaluate the performance of the least mean squares filter and compare it with a reference extended Kalman filter in full-dimensional (FD) MIMO channels. Two-dimensional (2D) arrays are deployed to control the elevation and azimuth planes in different tracking scenarios. This paper assumes pedestrian communication between a person in a hall and a station. The state vector in our model comprises the angular channel parameters (the angles of arrival and departure) and the channel path gain. We use the mean squared error (MSE) to evaluate our results. The tracking results of the FD channel parameters are also compared to those of the 2D channel parameters to emphasize the role of the 2D array deployments compared to one-dimensional (1D) arrays to track in an mmWave communications system. Our results confirm that the array configuration is more important than the array size in beam tracking at the mmWave band.
期刊介绍:
Transactions of Electrical Engineering is to foster the growth of scientific research in all branches of electrical engineering and its related grounds and to provide a medium by means of which the fruits of these researches may be brought to the attentionof the world’s scientific communities.
The journal has the focus on the frontier topics in the theoretical, mathematical, numerical, experimental and scientific developments in electrical engineering as well
as applications of established techniques to new domains in various electical engineering disciplines such as:
Bio electric, Bio mechanics, Bio instrument, Microwaves, Wave Propagation, Communication Theory, Channel Estimation, radar & sonar system, Signal Processing, image processing, Artificial Neural Networks, Data Mining and Machine Learning, Fuzzy Logic and Systems, Fuzzy Control, Optimal & Robust ControlNavigation & Estimation Theory, Power Electronics & Drives, Power Generation & Management The editors will welcome papers from all professors and researchers from universities, research centers,
organizations, companies and industries from all over the world in the hope that this will advance the scientific standards of the journal and provide a channel of communication between Iranian Scholars and their colleague in other parts of the world.