为高能超快激光器开发宽带高效中红外光栅

IF 2.8 3区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Optical Materials Express Pub Date : 2024-04-18 DOI:10.1364/ome.521507
Trevor B. Chen, Bangzhi Liu, Jake A. McCoy, Guy Lavallee, Michael Labella, William Mahony, Shane Miller, Chad Eichfeld, Naibo Jiang, and Paul S. Hsu
{"title":"为高能超快激光器开发宽带高效中红外光栅","authors":"Trevor B. Chen, Bangzhi Liu, Jake A. McCoy, Guy Lavallee, Michael Labella, William Mahony, Shane Miller, Chad Eichfeld, Naibo Jiang, and Paul S. Hsu","doi":"10.1364/ome.521507","DOIUrl":null,"url":null,"abstract":"Broadband high-efficiency diffraction gratings play a crucial role in the pulse stretcher and compressor of high-energy ultrafast lasers. Nevertheless, conventional grating manufacturing techniques, including mechanical ruling and holographic recording, face challenges in creating accurate blazed groove profiles necessary for the fabrication of broadband, high-efficiency mid-infrared gratings. In this work, we utilized combined electron-beam lithography and anisotropic wet etching technology to fabricate nearly perfect blazed grooves, producing high efficiency broadband mid-infrared (IR) grating for 4.3 µm 100 femtosecond laser. Global optimization was performed to achieve a design of &gt; 90% efficiency over spectral range of 3.6 µm – 6.6 µm. Hybrid metal-dielectric coating (Au-Al<sub>2</sub>O<sub>3</sub>) is employed and optimized to minimize absorption and to enhance diffraction efficiency and laser-induced damage threshold (LIDT). Prototype gratings undergo testing at a desired application wavelengths of 4.3 µm in a tunable range of 0.2 µm, revealing that the optimal sample achieves a diffraction efficiency of 92%, closely approaching the theoretical value of 94.2%","PeriodicalId":19548,"journal":{"name":"Optical Materials Express","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of broadband high efficiency Mid-IR gratings for high-energy ultrafast lasers\",\"authors\":\"Trevor B. Chen, Bangzhi Liu, Jake A. McCoy, Guy Lavallee, Michael Labella, William Mahony, Shane Miller, Chad Eichfeld, Naibo Jiang, and Paul S. Hsu\",\"doi\":\"10.1364/ome.521507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Broadband high-efficiency diffraction gratings play a crucial role in the pulse stretcher and compressor of high-energy ultrafast lasers. Nevertheless, conventional grating manufacturing techniques, including mechanical ruling and holographic recording, face challenges in creating accurate blazed groove profiles necessary for the fabrication of broadband, high-efficiency mid-infrared gratings. In this work, we utilized combined electron-beam lithography and anisotropic wet etching technology to fabricate nearly perfect blazed grooves, producing high efficiency broadband mid-infrared (IR) grating for 4.3 µm 100 femtosecond laser. Global optimization was performed to achieve a design of &gt; 90% efficiency over spectral range of 3.6 µm – 6.6 µm. Hybrid metal-dielectric coating (Au-Al<sub>2</sub>O<sub>3</sub>) is employed and optimized to minimize absorption and to enhance diffraction efficiency and laser-induced damage threshold (LIDT). Prototype gratings undergo testing at a desired application wavelengths of 4.3 µm in a tunable range of 0.2 µm, revealing that the optimal sample achieves a diffraction efficiency of 92%, closely approaching the theoretical value of 94.2%\",\"PeriodicalId\":19548,\"journal\":{\"name\":\"Optical Materials Express\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Materials Express\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1364/ome.521507\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Materials Express","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1364/ome.521507","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

宽带高效衍射光栅在高能超快激光的脉冲拉伸和压缩过程中发挥着至关重要的作用。然而,传统的光栅制造技术,包括机械裁决和全息记录,在制造宽带、高效中红外光栅所需的精确釉槽轮廓方面面临挑战。在这项工作中,我们利用电子束光刻技术和各向异性湿法蚀刻技术相结合,制作出了近乎完美的釉面沟槽,为4.3微米100飞秒激光器生产出了高效宽带中红外(IR)光栅。通过全局优化设计,在 3.6 µm - 6.6 µm 光谱范围内实现了 > 90% 的效率。采用并优化了金属-电介质混合涂层(Au-Al2O3),以尽量减少吸收,提高衍射效率和激光诱导损伤阈值(LIDT)。原型光栅在 0.2 微米可调范围内的理想应用波长 4.3 微米处进行了测试,结果表明最佳样品的衍射效率达到 92%,接近 94.2% 的理论值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of broadband high efficiency Mid-IR gratings for high-energy ultrafast lasers
Broadband high-efficiency diffraction gratings play a crucial role in the pulse stretcher and compressor of high-energy ultrafast lasers. Nevertheless, conventional grating manufacturing techniques, including mechanical ruling and holographic recording, face challenges in creating accurate blazed groove profiles necessary for the fabrication of broadband, high-efficiency mid-infrared gratings. In this work, we utilized combined electron-beam lithography and anisotropic wet etching technology to fabricate nearly perfect blazed grooves, producing high efficiency broadband mid-infrared (IR) grating for 4.3 µm 100 femtosecond laser. Global optimization was performed to achieve a design of > 90% efficiency over spectral range of 3.6 µm – 6.6 µm. Hybrid metal-dielectric coating (Au-Al2O3) is employed and optimized to minimize absorption and to enhance diffraction efficiency and laser-induced damage threshold (LIDT). Prototype gratings undergo testing at a desired application wavelengths of 4.3 µm in a tunable range of 0.2 µm, revealing that the optimal sample achieves a diffraction efficiency of 92%, closely approaching the theoretical value of 94.2%
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optical Materials Express
Optical Materials Express MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
5.50
自引率
3.60%
发文量
377
审稿时长
1.5 months
期刊介绍: The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community. Optical Materials Express (OMEx), OSA''s open-access, rapid-review journal, primarily emphasizes advances in both conventional and novel optical materials, their properties, theory and modeling, synthesis and fabrication approaches for optics and photonics; how such materials contribute to novel optical behavior; and how they enable new or improved optical devices. The journal covers a full range of topics, including, but not limited to: Artificially engineered optical structures Biomaterials Optical detector materials Optical storage media Materials for integrated optics Nonlinear optical materials Laser materials Metamaterials Nanomaterials Organics and polymers Soft materials IR materials Materials for fiber optics Hybrid technologies Materials for quantum photonics Optical Materials Express considers original research articles, feature issue contributions, invited reviews, and comments on published articles. The Journal also publishes occasional short, timely opinion articles from experts and thought-leaders in the field on current or emerging topic areas that are generating significant interest.
期刊最新文献
2023 Optical Materials Express Emerging Researcher Best Paper Prize: editorial Integrated Erbium-Doped Waveguide Amplifier on Lithium Niobate on Insulator A visible silica fiber laser based on Dy:BaF₂ nanoparticle doping Enhanced detection of UV fluorescence from food products and tissue using lanthanide-doped polymer composite membranes Inverse Design of Topological Photonic Time Crystals via Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1