A. Ya. Kanel-Belov, M. Golafshan, S. G. Malev, R. P. Yavich
{"title":"求直线和沃罗诺图平面泊松过程的面积和周长分布","authors":"A. Ya. Kanel-Belov, M. Golafshan, S. G. Malev, R. P. Yavich","doi":"10.1134/S1064562424701801","DOIUrl":null,"url":null,"abstract":"<p>The study of distribution functions (with respect to areas, perimeters) for partitioning a plane (space) by a random field of straight lines (hyperplanes) and for obtaining Voronoi diagrams is a classical problem in statistical geometry. Moments for such distributions have been investigated since 1972 [1]. We give a complete solution of these problems for the plane, as well as for Voronoi diagrams. The following problems are solved: 1. A random set of straight lines is given on the plane, all shifts are equiprobable, and the distribution law has the form <span>\\(F(\\varphi ).\\)</span> What is the area (perimeter) distribution of the parts of the partition? 2. A random set of points is marked on the plane. Each point <i>A</i> is associated with a “region of attraction,” which is a set of points on the plane to which <i>A</i> is the closest of the marked set. The idea is to interpret a random polygon as the evolution of a segment on a moving one and construct kinetic equations. It is sufficient to take into account a limited number of parameters: the covered area (perimeter), the length of the segment, and the angles at its ends. We show how to reduce these equations to the Riccati equation using the Laplace transform.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finding the Area and Perimeter Distributions for Flat Poisson Processes of a Straight Line and Voronoi Diagrams\",\"authors\":\"A. Ya. Kanel-Belov, M. Golafshan, S. G. Malev, R. P. Yavich\",\"doi\":\"10.1134/S1064562424701801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The study of distribution functions (with respect to areas, perimeters) for partitioning a plane (space) by a random field of straight lines (hyperplanes) and for obtaining Voronoi diagrams is a classical problem in statistical geometry. Moments for such distributions have been investigated since 1972 [1]. We give a complete solution of these problems for the plane, as well as for Voronoi diagrams. The following problems are solved: 1. A random set of straight lines is given on the plane, all shifts are equiprobable, and the distribution law has the form <span>\\\\(F(\\\\varphi ).\\\\)</span> What is the area (perimeter) distribution of the parts of the partition? 2. A random set of points is marked on the plane. Each point <i>A</i> is associated with a “region of attraction,” which is a set of points on the plane to which <i>A</i> is the closest of the marked set. The idea is to interpret a random polygon as the evolution of a segment on a moving one and construct kinetic equations. It is sufficient to take into account a limited number of parameters: the covered area (perimeter), the length of the segment, and the angles at its ends. We show how to reduce these equations to the Riccati equation using the Laplace transform.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1064562424701801\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1064562424701801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
摘要 研究用直线(超平面)随机场分割平面(空间)和获得 Voronoi 图的分布函数(与面积、周长有关)是统计几何中的一个经典问题。自 1972 年以来,人们一直在研究这种分布的矩 [1]。我们给出了这些问题在平面和沃罗诺伊图上的完整解决方案。我们解决了以下问题:1.在平面上给出一组随机的直线,所有的移动都是等价的,分布规律的形式是 \(F(\varphi ).\)分区各部分的面积(周长)分布是多少?2.在平面上标出一组随机点。每个点 A 都与一个 "吸引区域 "相关联,吸引区域是平面上的一组点,其中 A 与标记集最接近。我们的想法是将随机多边形解释为移动多边形上的线段演变,并构建动力学方程。只需考虑有限的参数:覆盖面积(周长)、线段长度和两端角度。我们将展示如何利用拉普拉斯变换将这些方程简化为里卡提方程。
Finding the Area and Perimeter Distributions for Flat Poisson Processes of a Straight Line and Voronoi Diagrams
The study of distribution functions (with respect to areas, perimeters) for partitioning a plane (space) by a random field of straight lines (hyperplanes) and for obtaining Voronoi diagrams is a classical problem in statistical geometry. Moments for such distributions have been investigated since 1972 [1]. We give a complete solution of these problems for the plane, as well as for Voronoi diagrams. The following problems are solved: 1. A random set of straight lines is given on the plane, all shifts are equiprobable, and the distribution law has the form \(F(\varphi ).\) What is the area (perimeter) distribution of the parts of the partition? 2. A random set of points is marked on the plane. Each point A is associated with a “region of attraction,” which is a set of points on the plane to which A is the closest of the marked set. The idea is to interpret a random polygon as the evolution of a segment on a moving one and construct kinetic equations. It is sufficient to take into account a limited number of parameters: the covered area (perimeter), the length of the segment, and the angles at its ends. We show how to reduce these equations to the Riccati equation using the Laplace transform.