通过带 ℓ∞ 约束条件的 ℓq 分裂分析进行压缩数据分离

IF 0.8 3区 数学 Q2 MATHEMATICS Acta Mathematica Sinica-English Series Pub Date : 2024-04-20 DOI:10.1007/s10114-024-2083-8
Ming Yang Gu, Song Li, Jun Hong Lin
{"title":"通过带 ℓ∞ 约束条件的 ℓq 分裂分析进行压缩数据分离","authors":"Ming Yang Gu,&nbsp;Song Li,&nbsp;Jun Hong Lin","doi":"10.1007/s10114-024-2083-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study compressed data separation (CDS) problem, i.e., sparse data separation from a few linear random measurements. We propose the nonconvex <i>ℓ</i><sub><i>q</i></sub>-split analysis with <i>ℓ</i><sub>∞</sub>-constraint and 0 &lt; <i>q</i> ≤ 1. We call the algorithm ℓ<sub><i>q</i></sub>-split-analysis Dantzig selector (<i>ℓ</i><sub><i>q</i></sub>-split-analysis DS). We show that the two distinct subcomponents that are approximately sparse in terms of two different dictionaries could be stably approximated via the <i>ℓ</i><sub><i>q</i></sub>-split-analysis DS, provided that the measurement matrix satisfies either a classical <i>D</i>-RIP (Restricted Isometry Property with respect to Dictionaries and <i>ℓ</i><sub>2</sub> norm) or a relatively new (<i>D, q</i>)-RIP (RIP with respect to Dictionaries and <i>ℓ</i><sub><i>q</i></sub>-quasi norm) condition and the two different dictionaries satisfy a mutual coherence condition between them. For the Gaussian random measurements, the measurement number needed for the (<i>D, q</i>)-RIP condition is far less than those needed for the <i>D</i>-RIP condition and the (<i>D</i>, 1)-RIP condition when <i>q</i> is small enough.</p></div>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":"40 7","pages":"1655 - 1673"},"PeriodicalIF":0.8000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compressed Data Separation via ℓq-Split Analysis with ℓ∞-Constraint\",\"authors\":\"Ming Yang Gu,&nbsp;Song Li,&nbsp;Jun Hong Lin\",\"doi\":\"10.1007/s10114-024-2083-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we study compressed data separation (CDS) problem, i.e., sparse data separation from a few linear random measurements. We propose the nonconvex <i>ℓ</i><sub><i>q</i></sub>-split analysis with <i>ℓ</i><sub>∞</sub>-constraint and 0 &lt; <i>q</i> ≤ 1. We call the algorithm ℓ<sub><i>q</i></sub>-split-analysis Dantzig selector (<i>ℓ</i><sub><i>q</i></sub>-split-analysis DS). We show that the two distinct subcomponents that are approximately sparse in terms of two different dictionaries could be stably approximated via the <i>ℓ</i><sub><i>q</i></sub>-split-analysis DS, provided that the measurement matrix satisfies either a classical <i>D</i>-RIP (Restricted Isometry Property with respect to Dictionaries and <i>ℓ</i><sub>2</sub> norm) or a relatively new (<i>D, q</i>)-RIP (RIP with respect to Dictionaries and <i>ℓ</i><sub><i>q</i></sub>-quasi norm) condition and the two different dictionaries satisfy a mutual coherence condition between them. For the Gaussian random measurements, the measurement number needed for the (<i>D, q</i>)-RIP condition is far less than those needed for the <i>D</i>-RIP condition and the (<i>D</i>, 1)-RIP condition when <i>q</i> is small enough.</p></div>\",\"PeriodicalId\":50893,\"journal\":{\"name\":\"Acta Mathematica Sinica-English Series\",\"volume\":\"40 7\",\"pages\":\"1655 - 1673\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Sinica-English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10114-024-2083-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-024-2083-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究压缩数据分离(CDS)问题,即从少量线性随机测量中分离稀疏数据。我们提出了具有 ℓ∞-constraint 和 0 < q ≤ 1 的非凸 ℓq-split 分析法。我们称这种算法为 ℓq-split-analysis Dantzig selector (ℓq-split-analysis DS)。我们证明,可以通过 ℓq-split-analysis DS 稳定地近似两个不同字典中近似稀疏的两个不同子组件、条件是测量矩阵满足经典的 D-RIP(关于字典和 ℓ2 准则的限制等距特性)或相对较新的(D, q)-RIP(关于字典和 ℓq 准准则的 RIP)条件,且两个不同字典之间满足相互一致的条件。对于高斯随机测量,当 q 足够小时,(D, q)-RIP 条件所需的测量次数远远少于 D-RIP 条件和 (D, 1)-RIP 条件所需的测量次数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Compressed Data Separation via ℓq-Split Analysis with ℓ∞-Constraint

In this paper, we study compressed data separation (CDS) problem, i.e., sparse data separation from a few linear random measurements. We propose the nonconvex q-split analysis with -constraint and 0 < q ≤ 1. We call the algorithm ℓq-split-analysis Dantzig selector (q-split-analysis DS). We show that the two distinct subcomponents that are approximately sparse in terms of two different dictionaries could be stably approximated via the q-split-analysis DS, provided that the measurement matrix satisfies either a classical D-RIP (Restricted Isometry Property with respect to Dictionaries and 2 norm) or a relatively new (D, q)-RIP (RIP with respect to Dictionaries and q-quasi norm) condition and the two different dictionaries satisfy a mutual coherence condition between them. For the Gaussian random measurements, the measurement number needed for the (D, q)-RIP condition is far less than those needed for the D-RIP condition and the (D, 1)-RIP condition when q is small enough.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
138
审稿时长
14.5 months
期刊介绍: Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.
期刊最新文献
Compactness of Extremals for Trudinger-Moser Functionals on the Unit Ball in ℝ2 On the Centralizers of Rescaling Separating Differentiable Vector Fields Variable Degeneracy of Planar Graphs without Chorded 6-Cycles Adaptive Distributed Inference for Multi-source Massive Heterogeneous Data L2 Schrödinger Maximal Estimates Associated with Finite Type Phases in ℝ2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1